
ОГЛАВ.	ПЕНИЕ:
ТАБЛИЧКА ЗАВОДА-ИЗГОТОВИТЕЛЯ 2	5.5 ПРОВЕРКА ВЫПОЛНЕННОГО МОНТАЖА . 12
	6. ПУСК, РАБОТА, ОСТАНОВ 13
1 ОБЩИЕ СВЕДЕНИЯ 3	6.1 ЗАПУСК ВНОВЬ УСТАНОВЛЕННОГО
1.1. ГАРАНТИЯ	AΓΡΕΓΑΤΑ13
	6.2. ЗАПУСК ПРИВОДА
2. ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ (ТБ) 3	6.3 ПОВТОРНЫЙ ПУСК13
2.1 КАК ПОЛЬЗОВАТЬСЯ ИНСТРУКЦИЕЙ ПО	6.4 ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ 13
ЭКСПЛУАТАЦИИ	6.5 CMA3KA
2.2 ОПАСНОСТЬ НЕСОБЛЮДЕНИЯ ПРАВИЛ ТБ 4	6.6 МОНИТОРИНГ РАБОТЫ АГРЕГАТА 14
2.3 ПРАВИЛА Т.Б. ДЛЯ ОПЕРАТОРА / РАБОТНИКА 4	6.7 ПРЕКРАЩЕНИЕ РАБОТЫ14
2.4 Правила ТБ при монтаже, инспекции,	6.8 ХРАНЕНИЕ / ДЛИТЕЛЬНЫЕ ПЕРЕРЫВЫ В
ТЕХНИЧЕСКОМ ОБСЛУЖИВАНИИ АГРЕГАТОВ5	РАБОТЕ
2.5 САМОВОЛЬНОЕ ВМЕШАТЕЛЬСТВО В КОНСТРУКЦИЮ, ИСПОЛЬЗОВАНИЕ ЗАПАСНЫХ ЧАСТЕЙ	7. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И УХОД. 15
К ИНЫМ АГРЕГАТАМ5	7.1 ОБЩИЕ УКАЗАНИЯ15
2.6 ПОСЛЕДСТВИЯ НЕСОБЛЮДЕНИЯ ПРАВИЛ	7.2 МЕХАНИЧЕСКИЕ УПЛОТНЕНИЯ
ЭКСПЛУАТАЦИИ	7.3 ПОДШИПНИКИ ЭЛЕКТРОДВИГАТЕЛЯ 15
2.7 Эксплуатация согласно инструкциям 5	7.4 YUCTKA HACOCA,
3. ОПИСАНИЕ 6	8. РАЗБОРКА И РЕМОНТ НАСОСА 15
	8.1 ОБЩИЕ УКАЗАНИЯ15
3.1 Конструкция	8.2 ОБЩАЯ ИНФОРМАЦИЯ
	8.3 Защита муфты, замена двигателя
КОНСТРУКЦИИ	
3.4 ПОДШИПНИКИ	9. ЗАПАСНЫЕ ЧАСТИ И РЕЗЕРВНЫЕ НАСОСЫ.
3.4 ПОДШИПНИКИ	
3.6 ОРИЕНТИРОВОЧНЫЕ УРОВНИ ЗВУКОВОГО	9.1 ЗАПАСНЫЕ ЧАСТИ16
ДАВЛЕНИЯ 8	9.2 РЕЗЕРВНЫЕ НАСОСЫ
3.7 ДОПУСТИМЫЕ НАГРУЗКИ И МОМЕНТЫ,	
ВОЗДЕЙСТВУЮЩИЕ НА ПАТРУБКИ НАСОСА	10. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕРЫ
8	ПО ИХ УСТРАНЕНИЮ17
3.8 ДОПУСТИМЫЕ ВЕЛИЧИНЫ ДАВЛЕНИЯ И	11 HUCENVIANIA NO DISCHUIVATANINI
ТЕМПЕРАТУРЫ 10	11. ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ
4. ТРАНСПОРТИРОВКА, ПОГРУЗКА -	ЭЛЕКТРОДВИГАТЕЛЕЙ ТИПОВ SM, LM, DPIG, DPIH20
РАЗГРУЗКА, ХРАНЕНИЕ10	
,	11.1 СФЕРА ПРИМЕНЕНИЯ ИНСТРУКЦИИ 20
4.1 ТРАНСПОРТИРОВКА И ПОГРУЗКА-	11.2 ПРИЕМКА ДВИГАТЕЛЯ21
РАЗГРУЗКА10	11.3. ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ. 21
4.2 КОНСЕРВАЦИЯ / ХРАНЕНИЕ11	11. ПЕРВЫЙ ПУСК НОВОГО ДВИГАТЕЛЯ 21
5. МОНТАЖ / УСТАНОВКА 11	11.5 МОНТАЖ И РАЗБОРКА23
	11.6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И
5.1 MOHTAЖ HACOCA /AFPEFATA11	CMA3KA
5.2 ПРИСОЕДИНЕНИЕ ТРУБОПРОВОДОВ К	11.7. Возможные неисправности – причины и
HACOCY11	РЕКОМЕНДАЦИИ
5.3 ПРИВОД	
5.4 ПОДКЛЮЧЕНИЕ К ЭЛЕКТРОСЕТИ 12	Pagnog uggoeg
LR27	Разрез насоса
L1	Разрез насоса LMR28
	Paspes hacoca LR, LMR, LMZ29
	Reca 3

ТАБЛИЧКА ЗАВОДА-ИЗГОТОВИТЕЛЯ ...

... Hacoc LMR, LMZ

Туре *) Тип насоса S/N *) Серийный номер

Year Год выпуска

Q, m3/h - номинальная производительность в рабочей точке в мз/час

P, кW - номинальная мощность в рабочей точке, кВт

Н, т - напор (Энергетический напор) в рабочей точке, м

n, min -1 - скорость, мин -1

раll w C, bar - Макс. допустимое давление на корпус насоса в ходе его эксплуатации (= наибольшему напорному давлению при номинальной рабочей температуре до которой корпус насоса может быть использован)

tmax. op, °C - Максимальная рабочая температура перекачиваемой жидкости

Item No Позиция номер

 $Imp \, Ø$, mm - Наружный диаметр рабочего колеса вMM

*) Все данные о конструкции и материалах определяются данной информацией. Эти данные должны быть указаны во всех запросах на запасные части, направляемых производителю.

... Hacoc LR

		rnst Vogel (ıu / Austria	3mbH	Date No		Œ
Туре				Cod.		
Q	-	m³/h	Hmin	m	P2	kW
Н	-	m	n	1/min	<u></u>	
Motor	~				⟨Ş⟩ ITT	Industries

Туре *) Тип насоса

Cod *) Серийный номер

Q, m3/h - номинальная производительность в рабочей точке в м3/час

Hmin, m - минимальный приемлемый напор, м

P2, кW - номинальная мощность, кВт

Н, т - напор (Энергетический напор) в рабочей точке, м

n, 1/min - скорость, 1/мин

Motor, тип двигателя

*) Все данные о конструкции и материалах определяются данной информацией. Эти данные должны быть указаны во всех запросах, на запасные части, направляемых производителю.

1 ОБЩИЕ СВЕДЕНИЯ

Данное Изделие соответствует требованиям Машиностроительной Директивы № 98/37/EG (бывшей 89/392/EWG).

<u>∧</u>

ВНИМАНИЕ! Персонал, привлекаемый к монтажу, эксплуатации, осмотрам и техническому обслуживанию Изделия, должен обладать соответствующими знаниями и опытом, в том числе – по технике безопасности. Если такое неосуществимо, то работников следует должным образом обучить и проэкзаменовать.

Безопасность эксплуатации насоса или насосного агрегата (т.е. насоса в сборе с приводным двигателем) может быть гарантирована только при соблюдении Пользователем указанных в технической документации параметров и ограничений, а также - требований Главы 6 «Пуск, работа, останов».

Оператор Изделия несет персональную ответственность за соблюдение всех требований настоящей Инструкции, включая указания по технике безопасности. Безотказная эксплуатация достигается только тогда, когда установка и техническое обслуживание насоса или агрегата проводятся в строгом соответствии с действующими нормами и правилами, относящимися к инженерному делу, электротехнике, т.е. к оборудованию, связанному с конкретным насосом. ЕСЛИ В ДАННОЙ ИНСТРУКЦИИ ОТСУТСТВУЮТ НЕОБХОДИМЫЕ ВАМ СВЕДЕНИЯ, ПОЖАЛУЙСТА, ОБРАЩАЙТЕСЬ К НАШИМ ПРЕДСТАВИТЕЛЯМ! ЗАВОД-ИЗГОТОВИТЕЛЬ НЕ НЕСЕТ ОТВЕТСТВЕНОСТЬ ЗА ПОСЛЕДСТВИЯ НАРУШЕНИЙ ДАННОЙ ИНСТРУКЦИИ! Настоящую Инструкцию следует бережно хранить в легко доступном месте для возможных справок по ходу эксплуатации Изделий.

При передаче Изделий в пользование третьим лицам, необходимо также *полностью* передавать настоящую Инструкцию и прочие

документы, необходимые для обеспечения надлежащей эксплуатации.

Настоящей Инструкцией предусмотрены лишь наиболее типичные обстоятельства, могущие возникнуть при монтаже, эксплуатации и/или техническом обслуживании Изделий. Настоящая Инструкция, техническая документация и чертежи защищены копирайтом нашей Компании и предназначены для использования исключительно обслуживающим персоналом соответствующих Изделий. Полное или частичное копирование и/или распространение указанных документов без предварительного согласования с нами влекут судебную ответственность!

1.1. ГАРАНТИЯ

Дается согласно нашим Условиям Поставки и/или подтверждению заказа. Любые ремонтные работы в течение гарантийного периода должны выполняться нашими уполномоченными представителями и лишь по предварительному ПИСЬМЕННОМУ согласованию с нашей компанией могут поручаться сторонним лицам. В ПРОТИВНОМ СЛУЧАЕ ГАРАНТИЯ АННУЛИРУЕТСЯ! Долгосрочные гарантийные обязательства подразумевают неукоснительное соблюдение Пользователем требований технической документации, в том числе, касающихся характеристик перекачиваемых растворов. Гарантия НЕ ПОКРЫВАЕТ повреждения. полученные при транспортировке, включая погрузку-разгрузку, а также естественный износ, по мере эксплуатации, рабочих колес, уплотнений, втулок, валов, промежуточных колец и т.п. ЕСЛИ, ПОСЛЕ ПОЛУЧЕНИЯ ВАМИ

ЕСЛИ, ПОСЛЕ ПОЛУЧЕНИЯ ВАМИ
ЗАКАЗАННОГО НАСОСА, ОКАЖЕТСЯ, ЧТО
ФАКТИЧЕСКИЕ УСЛОВИЯ ЕГО ЭКСПЛУАТАЦИИ
СКОЛЬ-НИБУДЬ ЗАМЕТНО ОТЛИЧАЮТСЯ ОТ
ПРЕДУСМОТРЕННЫХ ТЕХНИЧЕСКОЙ
ДОКУМЕНТАЦИЕЙ, ТО ГАРАНТИЯ ОСТАНЕТСЯ
В СИЛЕ ТОЛЬКО ПОСЛЕ ПИСЬМЕННОГО
СОГЛАСОВАНИЯ ВОПРОСА С НАШЕЙ
КОМПАНИЕЙ!

2. ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ (ТБ)

Настоящую Инструкцию следует должным образом доводить до сведения всех лиц, привлекаемых к монтажу, эксплуатации, техническому обслуживанию наших изделий до начала соответствующих работ, а в дальнейшем - бережно хранить в пределах доступности от места установки агрегата или насоса.

Помимо настоящей Инструкции, исполнители конкретных работ должны строго руководствоваться также общими нормативами по ТБ, охране труда, производственной гигиене, безопасному обращению с конкретно перекачиваемыми веществами, особенно, если они относятся к токсичным, огневзрывоопасным и т.п. К разрешению возможных вопросов следует

привлекать соответственно квалифицированный и/или уполномоченный персонал.

ВСЯ ПОЛНОТА ОТВЕТСТВЕННОСТИ ЗА БЕЗОПАСНУЮ ЭКСПЛУАТАЦИЮ ИЗДЕЛИЙ ВОЗЛАГАЕТСЯ НА ИХ ОПЕРАТОРОВ.

2.1 Как пользоваться Инструкцией по эксплуатации

Указания по ТБ, приводимые в настоящей Инструкции, промаркированы согласно нормам DIN 4844

Несоблюдение данного указания чревато повреждением насоса и/или нарушением технологического процесса.

ВНИМАНИЕ: опасный момент!

ОПАСНОСТЬ поражения электрическим током!

Инструкции по ТБ, прилагаемые непосредственно к насосу или насосному агрегату следует соблюдать неукоснительно БЕЗУСЛОВНОМУ СОБЛЮДЕНИЮ, наряду с данной Инструкцией, подлежат все указания по ТБ, прилагаемые к отдельным комплектующим (например, к электродвигателю); такую документацию следует хранить единым пакетом в легко доступном месте.

2.2 Опасность несоблюдения правил ТБ

Несоблюдение Правил лишает Пользователя права на компенсацию возможного ущерба от аварии.

Дальнейшее несоблюдение влечет за собой:

- Риск нарушения технологического процесса на всем предприятии;
- Риск повреждения электронных устройств и приборов колебаниями магнитных полей;
- Травмирование третьих лиц и/или повреждение их имущества колебаниями магнитных полей;
- Травмирование третьих лиц вследствие электрического, механического и химического воздействия;
- Загрязнение окружающей среды разливом опасных веществ.

2.3 Правила Т.Б. для оператора / работника

 Поскольку естественное старение вследствие механического износа, коррозии и т.п. по ходу эксплуатации способно резко изменить срок службы и эксплуатационные параметры насоса, ОПЕРАТОР ОБЯЗАН СЛЕДИТЬ за своевременностью и добросовестностью проведения осмотров и технического

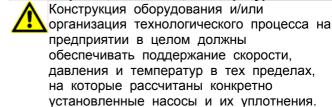
- обслуживания вверенного ему оборудования, включая замену износившихся частей запасными. ПРИ ОБНАРУЖЕНИИ ЛЮБЫХ ПОВРЕЖДЕНИЙ И/ИЛИ НЕОБЫЧНЫХ ЯВЛЕНИЙ ПРИ ЭКСПЛУАТАЦИИ, ОПЕРАТОРУ СЛЕДУЕТ НЕЗАМЕДЛИТЕЛЬНО ОСТАНОВИТЬ НАСОС ДО УСТРАНЕНИЯ ДЕФЕКТОВ.
- ЕСЛИ ОТКАЗ ИЛИ НЕПРАВИЛЬНОЕ ФУНКЦИОНИРОВАНИЕ ЛЮБОГО АГРЕГАТА И/ИЛИ СИСТЕМЫ В ЦЕЛОМ МОГУТ ПРИВЕСТИ К РАНЕНИЯМ ЛЮДЕЙ И/ИЛИ СЕРЬЕЗНЫМ ПОВРЕЖДЕНИЯМ ИМУЩЕСТВА, таковые агрегаты и системы должны оснащаться подходящими средствами сигнализации об аварийных ситуациях, подвергаться регулярным осмотрам, проверкам и т.п.
- Части оборудования, чрезмерные нагрев или охлаждение которых при работе опасны для человека, должны быть надлежащим образом огорожены и/или снабжены предупреждающими знаками.
- Запрещается эксплуатировать оборудование без предусмотренных его конструкцией кожухов и т.п. средств защиты от случайного контакта с вращающимися/движущимися частями.
- Приближаться к работающему насосу и агрегату, фактический уровень шума от которых превышает 85 дБ(A), допустимо лишь при наличии адекватных средств защиты слуха!
- При невозможности полностью избежать подтекания опасных веществ (в частности, через уплотнение вала), необходимо обеспечить отведение протечек безопасным для людей и окружающей среды способом с учетом действующего экологического законодательства.
- НЕОБХОДИМО СТРОГО СОБЛЮДАТЬ ДЕЙСТВУЮЩИЕ ПРАВИЛА ЭЛЕКТРОБЕЗОПАСНОСТИ, включая надежное обесточивание электрических устройств, на которых должны проводиться какие-либо работы. ЭЛЕКТРОДВИГАТЕЛЬ ДОПУСКАЕТСЯ ПОДКЛЮЧАТЬ К СЕТИ ТОЛЬКО ЧЕРЕЗ ЗАЩИТНЫЙ ВЫКЛЮЧАТЕЛЬ-АВТОМАТ!

2.4 Правила ТБ при монтаже, инспекции, техническом обслуживании агрегатов

- ОПЕРАТОР НЕСЕТ ПЕРСОНАЛЬНУЮ ОТВЕТСТВЕННОСТЬ ЗА ВЫПОЛНЕНИЕ ВСЕХ РАБОТ НА ОБОРУДОВАНИИ СООТВЕТСТВЕННО КВАЛИФИЦИРОВАНЫМ И УПОЛНОМОЧЕННЫМ НА ТО ПЕРСОНАЛОМ, а также за ознакомление персонала с настоящей Инструкцией.
- Как правило, ВСЕ РАБОТЫ ДОЛЖНЫ ВЫПОЛНЯТЬСЯ НА НАСОСАХ/АГРЕГАТАХ ПОСЛЕ ИХ ОСТАНОВКИ, СНЯТИЯ ДАВЛЕНИЯ И ВОЗВРАЩЕНИЯ ВСЕХ ЧАСТЕЙ К ТЕМПЕРАТУРЕ ОКРУЖАЮЩЕГО ВОЗДУХА. Необходимо принять достаточные защитные меры от случайного пуска агрегата третьими лицами, а ЕСЛИ ПЕРЕКАЧИВАЛИСЬ ОПАСНЫЕ ВЕЩЕСТВА - ПРОИЗВЕСТИ НЕОБХОДИМОЕ ОБЕЗЗАРАЖИВАНИЕ. ПО ОКОНЧАНИИ РАБОТЫ - СЛЕДУЕТ УСТАНОВИТЬ НА МЕСТО/ПОДКЛЮЧИТЬ/ ПРИВЕСТИ В ДЕЙСТВИЕ ВСЕ ПРЕДУСМОТРЕННЫЕ КОНСТРУКЦИЕЙ ЗАЩИТНЫЕ СРЕДСТВА.

2.5 Самовольное вмешательство в конструкцию, использование запасных частей к иным агрегатам

Какие-либо изменения В конструкцию допускается вносить только с предварительного согласия предприятия-изготовителя. Безопасность эксплуатации может гарантирована лишь при использовании частей и/ли приспособлений. запасных предусмотренных предприятием-изготовителем. ПРЕДПРИЯТИЕ-ИЗГОТОВИТЕЛЬ НЕ НЕСЕТ ОТВЕТСТВЕННОСТЬ ЗА ВОЗМОЖНЫЕ ПОСЛЕДСТВИЯ НАРУШЕНИЯ ПРИВЕДЕННЫХ ВЫШЕ ПРАВИЛ!


2.6 Последствия несоблюдения правил эксплуатации

Безопасность эксплуатации наших Изделий может быть обеспечена лишь неукоснительным соблюдением требований настоящей Инструкции.

НИ ПРИ КАКИХ УСЛОВИЯХ НЕДОПУСТИМО ПРЕВЫШАТЬ МАКСИМАЛЬНЫЕ ВЕЛИЧИНЫ ПАРАМЕТРОВ, данные в технической документации на конкретные Изделия.

2.7 Эксплуатация согласно инструкциям

2.7.1 Скорость, давление, температура

НЕОБХОДИМО ТАКЖЕ ОБЕСПЕ-ЧИТЬ ДОСТАТОЧНЫЙ УРОВЕНЬ ВХОДНОГО (СИСТЕМНОГО) ДАВЛЕНИЯ

Необходимо предотвращать воздействие на насос резких колебаний температур и давления: последние, происходящие, к примеру, при резких остановках системы в целом, могут быть устранены дополнительным введением обратных клапанов, резервуаров-поглотителей и т.п. В противном случае, может нарушиться нормальная работа насоса или его отдельных деталей вплоть до полного их разрушения.

2.7.2 Допустимые нагрузки и моменты, воздействующие на патрубки насоса

В целом, сама конструкция всасывающего и напорного трубопроводов должна сводить к предельно возможному минимуму нагрузку на патрубки насоса. КАК ПРИ ДЕЙСТВУЮЩЕМ, ТАК И ПРИ ОТКЛЮЧЕННОМ НАСОСЕ, ПРИ ВСЕХ ПОТЕНЦИАЛЬНО ВОЗМОЖНЫХ ДАВЛЕНИЯХ И ТЕМПЕРАТУРАХ, МЕХАНИЧЕСКИЕ ВОЗДЕЙСТВИЯ НА ПАТРУБКИ НЕ ДОЛЖНЫ ПРЕВЫШАТЬ ВЕЛИЧИНЫ, УКАЗАНЫЕ В ГЛАВЕ 3.5. НАСТОЯЩЕЙ ИНСТРУКЦИИ.

2.7.3 Допустимый кавитационный запас (NPSH)

Перекачиваемый раствор должен находиться под давлением, предотвращающим возникновение кавитации на входе жидкости в рабочее колесо, в том числе, при внезапном прекращении потока, т.е. АВИТАЦИОННЫЙ ЗАПАС ОБСЛУЖИВАЕМОЙ НАСОСОМ СИСТЕМЫ ПРИ ЛЮБЫХ УСЛОВИЯХ ЭКСПЛУАТАЦИИ ДОЛЖЕН ПРЕВЫШАТЬ ВЕЛИЧИНУ КАВИТАЦИОННОГО ЗАПАСА САМОГО НАСОСА

Особенного внимания требует перекачивание растворов, находящихся под давлением, близким к давлению паров: недостаточный кавитационный запас насоса чреват, в таком случае, серьезными повреждениями оборудования вследствие как кавитации, так и перегрева.

Требуемый КАВИТАЦИОННЫЙ ЗАПАС (NPSHR) КАЖДОГО КОНКРЕТНОГО НАСОСА УКАЗЫВАЕТСЯ ПОСРЕДСТВОМ ГРАФИЧЕСКИХ КРИВЫХ.

2.7.4 Обратный поток

В закрытых технологических системах, работающих под давлением (например, в

газовых подушках) недопустимо «стравливать» давление через насос, т.к. скорость возникающего при этом обратного потока будет много больше той, на которую насос рассчитан, что приведет к повреждениям последнего

3. ОПИСАНИЕ.

3.1 Конструкция.

Насосы моделей LR, LMR, LMZ -

одноступенчатые насосы в линию с всасывающим и напорным патрубками «в линию» и с соответствующим диаметром трубопровода..

Модель LR и LMR:

Насос « в линию» с закрытым рабочим колесом радиального типа в блочной конструкции с двигателем в сборе.

Модель LMZ:

Насос « в линию» с закрытым рабочим колесом радиального типа в блочной конструкции с двигателем в сборе.

Модель LMZ – это сдвоенный насос с двумя идентичными приводными блоками, общим корпусом насоса и встроенной дроссельной задвижкой на напорной стороне.

Данные насосы не предусматривают перекачивание легковоспламеняющихся и опасных растворов, а также эксплуатацию во взрывоопасных условиях

Все двигатели соответствуют стандарту DIN 42677-IM В5. Двигатель и вал насоса сочленены жестко.

Особенности конструкции и допустимые условия эксплуатации на каждую конкретно модель указываются в сопроводительной документации - см. п. 3.2 ниже.

Монтажная позиция- насосы LR и LMR:

Устанавливаются с опорой на основе или непосредственно в трубопровод в любом положении, но монтажная позиция с двигателем направленным вниз не разрешена из соображений безопасности.

Монтажная позиция - насос LMZ:

Как и модели LR и LMR , но монтажная позиция с дроссельной задвижкой на всасывающей стороне не разрешена.

Макс. рабочее давление: см.главу 3.8.

Соответствующий разрез поставляемого насоса, а также вес насоса и всей установки показаны в приложении.

3.2 Система условных обозначений конструкции

В соответствии с условными обозначениями на листе технических данных / или подтверждении заказа вся информация о поставляемом насосе содержится в Инструкции по монтажу, эксплуатации и техническому обслуживанию, напр.:

LMR 65 – 250 U1 V N 370 2 (0) (1) (2) (3) (4) (5) (6) (7), где

Позиция (0) - наименование модели:

LR/LMR/LMZ - насос блочный конструкции

Позиция (1) - диаметр напорного и всасывающего патрубка в мм.

Позиция (2) - номинальный диаметр рабочего колеса в мм.

Позиция (3) - тип уплотнения вала Механическое одинарное несбалансированное U-образное в соответствии с DIN 24960 I1k/ EN 12756

U1 - углерод/карбид кремния/EPDM (BQ1EGG)

U2 - углерод/карбид кремния/Витон (BQ1VGG)

U3 - карбид кремния/карбид кремния/Витон (Q1Q1VGG).

Позиция (4) - материал рабочего колеса:

- N чугунное литье Модель LMN (0.6020), Модель LMR и LMZ (0.6025)
- S бронза (2.1050.01) только для модели LMR и LMZ
- V нержавеющая сталь (1.4404) только для модели LR

Позиция (5) - материал корпуса насоса:

N - чугунное литье — Модель LMN (0.6020), Модель LM (0.6025)

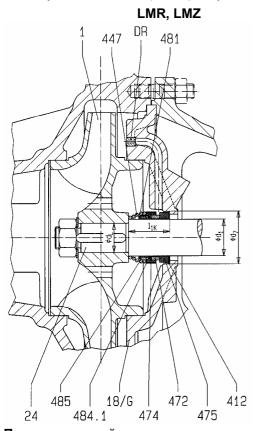
Другие материалы не применяются

Позиция (6) - Мощность двигателя (в 1/10 кВт) Позиция (7) – Количество контактов двигателя – 2-х полюсного = 2950об/мин., соответственно, 4-х

полюсного = 1450об/мин.

3.3 Уплотнение вала

3.3.1 Конструкция механического уплотнения

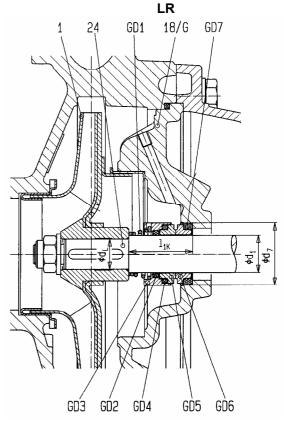

Данные насосы комплектуются U-образными одинарными механическими уплотнениями, установочные размеры которых соответствуют нормам EN 12756 (DIN 24960). ПОДВОД

СПЕЦИАЛЬНОЙ УПЛОТНЯЮЩЕЙ ЖИДКОСТИ НЕ ТРЕБУЕТСЯ *ПРИ УСЛОВИИ* ПОСТОЯННОГО ЗАПОЛНЕНИЯ КАМЕРЫ УПЛОТНЕНИЯ ПЕРЕКАЧИВАЕМЫМ РАСТВОРОМ.

Подробную информацию о материалах и эксплуатационных параметрах уплотнений см. в

таблице данных настоящей Инструкции и в сопроводительной документации конкретных насосов.

Устройство уплотнений - см. на прилагаемых разрезах.


Перечень частей:

Отверстие

DR

1	Рабочее колесо
18/G	Крышка корпуса
24	Вал
412	Втулка колена
447	Пружина
472	Вращающееся кольцо уплотнения
474	Диск
475	Стационарное кольцо уплотнения
481	Кожух
484.1	Кольцо колена
485	Стяжка

Типоразмер насоса LMR, LMZ	d₁	d ₇	d_L	l _{1k}
LMZ 40-160, LMZ 40-200				
LMZ 50-160, LMZ 50-200				
LMZ 50-250, LMZ 65-125				
LMZ 65-160, LMZ 65-200	30	45		42,5
LMZ 65-250, LMZ 80-125				
LMZ 80-160, LMZ 80-200				
LMZ 100-160				
LMR 126-160, LMR 125-200				
LMR 125-250, LMR 125-315				
LMR 150-250, LMZ 80-250	40	58	32	45
LMZ 100-200, LMZ 100-250	70	30	02	73
LMZ 125-160, LMZ 125-200				
LMZ 125-250, LMZ 150-250				
LMR 150-200, LMZ 150-200	50	70	42	47,5

Перечень частей:

	0112 14010111
1	Рабочее колесо
18/G	Крышка корпуса
24	Вал
GD1	Пружина со свойствами стяжки
GD2	Кольцевое уплотнение (вал)
GD3	Гнездо вращающегося уплотнительного кольца
GD4	Кольцевое уплотнение
	(Вращающееся кольцо уплотнения)
GD5	Вращающееся кольцо уплотнения
GD6	Стационарное кольцо уплотнения
GD7	Кольцевое уплотнение
	(Стационарное кольцо уплотнения)

Типоразмер насоса LR	d_1	d_7	d_L	I_{1k}
LR 40-125, LR 40-160 LR 40-200, LR 40-250 LR 50-125, LR 50-160 LR 50-200, LR 65-125 LR 65-160, LR 65-200 LR 80-125, LR 80-160	22	37	18	37,5
LR 50-250, LR 65-250 LR 80-200, LR 80-250 LR 100-160, LR 100-200	28	43	24	42,5
LR 100-250	33	48		42,5

Упомянутые размеры относятся к механическим уплотнениям в соответствии с EN 12756 с длиной I_{1к}. Размеры указаны в мм и необязательны! – Данная информация может быть изменена без предупреждения!

3.3.2 Общие сведения

При ремонте насоса, *HE EКОМЕНДУЕТСЯ* повторная установка исправных внешне, но прослуживших уже длительное время механических уплотнений, которые, скорее всего, БУДУТ ПРОТЕКАТЬ. Лучше сразу заменить уплотнения новыми, а старые, по желанию, могут быть восстановлены в наших сервис-центрах для дальнейшего их использования как запасных.

3.3.3 Информация по монтажу уплотнений

- Поверхности вновь устанавливаемых механических уплотнений должны быть абсолютно чистыми, сухими и неповрежденными. НЕ ДОПУСКАЕТСЯ нанесение смазки на трущиеся поверхности таких уплотнений, если только иное не предусмотрено инструкцией на конкретное уплотнение!
- ПРИ НЕОБХОДИМОСТИ ВОСПОЛЬЗОВАТЬСЯ СМАЗКОЙ ДЛЯ МОНТАЖА УПЛОТНЕНИЯ
- НЕДОПУСТИМО ИСПОЛЬЗОВАНИЕ КРЕМНИЕВЫХ СМАЗОК, а масла или вязкие минеральные смазки следует предварительно проверить на совместимость с материалами конкретных уплотнений

Применять смазочные материалы, не удостоверившись, что они не вступят в самопроизвольную реакцию с перекачиваемым раствором!

- Смазочные материалы, рекомендуемые для монтажа данных уплотнений, сохраняют эффективность в течение очень короткого времени, поэтому ЗАРАНЕЕ ПОДГОТОВЬТЕ ВСЕ НЕОБХОДИМОЕ И ПРОИЗВЕДИТЕ МОНТАЖ КАК МОЖНО СКОРЕЕ: загустевание смазки до окончания монтажа чревато некачественной установкой уплотнения!
- НЕДОПУСТИМО НАДВИГАТЬ
 ЭЛАСТИЧНЫЕ ЧАСТИ УПЛОТНЕНИЙ НА
 ОСТРЫЕ КРОМКИ ДЕТАЛЕЙ: следует
 кромки закруглить, или воспользоваться
 монтажными втулками, переходниками и
 т.п
- УПЛОТНЕНИЯ С ГОФРИРОВАННОЙ ЭЛАСТИЧНОЙ ЧАСТЬЮ насаживать на вал, удерживая последнюю *СЖАТОЙ* во избежание ее случайного разрыва!

3.4 ПОДШИПНИКИ

Вал насоса вращается в шариковых подшипниках электродвигателя, которые не

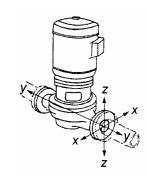
требуют пополнения смазки и иного технического обслуживания весь расчетный срок службы насоса.

3.5 КОНДЕНСАЦИЯ

Для двигателей, которые используются при высокой разности температур и в местах с экстремальными климатическими условиями при высокой влажности мы рекомендуем применять антиконденсатные обогреватели для предотвращения конденсации воды в корпусе установки. В ходе работы двигателя антиконденсатный обогреватель не должен быть включен.

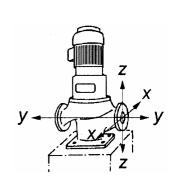
3.6 ОРИЕНТИРОВОЧНЫЕ УРОВНИ ЗВУКОВОГО ДАВЛЕНИЯ

	Уровень звукового давления Lpa в дБ(A)									
Номиналь	Т	олько нас	сос	Hace	ос + двига	атель				
ное	2950	1450		2950	1450					
	мин ⁻¹	МИН ⁻¹		мин ⁻¹	МИН ⁻¹					
0,55	50,5	49,5		58,0	52,0					
0,75	52,0	51,0		59,0	54,0					
1,1	54,0	53,0		60,0	55,5					
1,5	55,5	55,0		63,5	57,0					
2,2	58,0	57,0		64,5	59,0					
3,0	59,5	58,5		68,5	61,0					
4,0	61,0	60,0		69,0	63,0					
5,5	63,0	62,0		70,0	65,0					
7,5	64,5	63,5		70,5	67,0					
11,0	66,5	65,5		72,0	69,0					
15,0	68,0	67,0		72,5	70,0					
18,5	69,0	68,5		73,0	70,5					
22,0	70,5			74,5						


Приведены уровни для насоса в сборе с двигателем, измеренные на расстоянии 1 м. от их поверхностей согласно нормам DIN 45635, Части 1 и 24. Влияние особенностей помещения и фундамента не учитывалось; соответствующий допуск ± 3 дБ(A). Для агрегатов, работающих на токе частотой 60 Гц., в каждом случае добавлять 4 дБ(A) (насос в сборе с двигателем).

3.7 ДОПУСТИМЫЕ НАГРУЗКИ И МОМЕНТЫ, ВОЗДЕЙСТВУЮЩИЕ НА ПАТРУБКИ НАСОСА ...

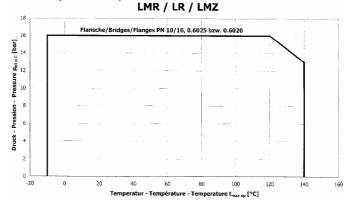
... должны соответствовать рекомендациям «ЕВРОПАМП» и нормам ISO 5199.


Приводимые ниже данные относятся *только к статическим нагрузкам со стороны трубопроводов,* даются в расчете на *один* патрубок из стандартного материала № 0.6020 (Тип LR) и /или 0.6025 (Тип LMR, LMZ).

Действительно для насосов, встроенных в трубопровод.									
		Патрубки насоса							
размеры		-	СИЛЬ	ы [N]		·		гы [Nm]	
	ØDN	Fx	Fy	Fz	∑F	Mx	My	Mz	\sum M
40-125	40	550	625	500	975	650	450	525	950
40-160	40	550	625	500	975	650	450	525	950
40-200	40	550	625	500	975	650	450	525	950
40-250	40	550	625	500	975	650	450	525	950
50-125	50	750	825	675	1300	700	500	575	1025
50-160	50	750	825	675	1300	700	500	575	1025
50-200	50	750	825	675	1300	700	500	575	1025
50-250	50	750	825	675	1300	700	500	575	1025
65-125	65	925	1050	850	1650	750	550	600	1100
65-160	65	925	1050	850	1650	750	550	600	1100
65-200	65	925	1050	850	1650	750	550	600	1100
65-250	65	925	1050	850	1650	750	550	600	1100
80-125	80	1125	1250	1025	1975	800	575	650	1175
80-160	80	1125	1250	1025	1975	800	575	650	1175
80-200	80	1125	1250	1025	1975	800	575	650	1175
80-250	80	1125	1250	1025	1975	800	575	650	1175
100-160	100	1500	1675	1350	2625	875	625	725	1300
100-200	100	1500	1675	1350	2625	875	625	725	1300
100-250	100	1500	1675	1350	2625	875	625	725	1300
125-160	125	1775	1975	1600	3100	1050	750	950	1525
125-200	125	1775	1975	1600	3100	1050	750	950	1525
125-250	125	1775	1975	1600	3100	1050	750	950	1525
125-315	125	1775	1975	1600	3100	1050	750	950	1525
150-200	150	2250	2500	2025	3925	1250	875	1025	1825
150-250	150	2250	2500	2025	3925	1250	875	1025	1825

Действительно для насосов, стоящих на опоре.

		Патрубки насоса							
размеры			СИЛЬ		-			гы [Nm]	
	ØDN	Fx	Fy	Fz	∑F	Mx	My	Mz	\sum M
40-125	40	420	470	380	730	490	300	370	680
40-160	40	420	470	380	730	490	300	370	680
40-200	40	420	470	380	730	490	300	370	680
40-250	40	420	470	380	730	490	300	370	680
50-125	50	570	620	510	980	510	310	380	700
50-160	50	570	620	510	980	510	310	380	700
50-200	50	570	620	510	980	510	310	380	700
50-250	50	570	620	510	980	510	310	380	700
65-125	65	700	790	640	1240	530	330	390	730
65-160	65	700	790	640	1240	530	330	390	730
65-200	65	700	790	640	1240	530	330	390	730
65-250	65	700	790	640	1240	530	330	390	730
80-125	80	1125	1250	1025	1975	550	340	400	760
80-160	80	1125	1250	1025	1975	550	340	400	760
80-200	80	1125	1250	1025	1975	550	340	400	760
80-250	80	1125	1250	1025	1975	550	340	400	760
100-160	100	1500	1675	1350	2625	630	380	480	870
100-200	100	1500	1675	1350	2625	630	380	480	870
100-250	100	1500	1675	1350	2625	630	380	480	870


125-160	125	1775	1975	1600	3100	800	500	700	1180
125-200	125	1775	1975	1600	3100	800	500	700	1180
125-250	125	1775	1975	1600	3100	800	500	700	1180
125-315	125	1775	1975	1600	3100	800	500	700	1180
150-200	150	2250	2500	2025	3925	1000	630	780	1420
150-250	150	2250	2500	2025	3925	1000	630	780	1420

3.8 ДОПУСТИМЫЕ ВЕЛИЧИНЫ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ.

В целом, пользователь должен строго выдерживать значения, данные в сопроводительной технической документации, подтверждении заказа и/ли на табличке конкретного насоса. Работа в условиях превышающих данные значения или при значениях ниже указанных недопустима. Если же такая информация отсутствует, руководствуйтесь приводимыми ниже значениями для давления всасывания и комнатной температуры.

ПОД ДАВЛЕНИЕМ ВСАСЫВАНИЯ (
ДАВЛЕНИЕМ В СИСТЕМЕ) понимается
давление на входе в насос, которое не
должно превышать 5 Бар при температуре
окружающего воздуха не свыше +40 ° С.
Необходимо также принимать во внимание
действующие международные стандарты (DIN

4747, -4752, разд. 4.5...) и правила, принятые на конкретном производстве

Flanges - фланцы, PN 10 / 16 Pressure - давление, бар. Тетрегаture- максимальная рабочая температура, ⁰ С

4. ТРАНСПОРТИРОВКА, ПОГРУЗКА - РАЗГРУЗКА, ХРАНЕНИЕ

4.1 ТРАНСПОРТИРОВКА И ПОГРУЗКА-РАЗГРУЗКА.

- Напорные патрубки насоса должны быть плотно закрыты заглушками.
 Внимательно проверяйте доставленные Вам насосы (агрегаты), дабы выявить повреждения, отсутствующие части и т.п.;
- Любые перемещения насосов (агрегатов) лучше всего поручать соответственно квалифицированному персоналу. В любом случае, будьте осторожны, не допускайте удары и т.п. резкие воздействия на оборудование.
- Полученный с завода-изготовителя насос (агрегат) перемещайте согласно указаниям на его упаковке. Упаковку с насосом (агрегатом) сохраняйте в том же положении, в каком Вам ее доставили;
- До подсоединения трубопроводов, всасывающий и напорный патрубки насоса должны быть плотно закрыты заглушками.

- При утилизации упаковочных материалов, соблюдайте действующее законодательство об охране окружающей среды.
 - Подъемно-транспортное оборудование: вилочные погрузчики, краны, кран-балки, тали, стропы и т.п. должны соответствовать габаритам и массе конкретного агрегата, обслуживаясь соответственно квалифицированным персоналом;
- Насос (агрегат) поднимать только за такие прочные части, как рама, фланцы или корпус согласно Рис.2.

↑ НЕ СТОЙТЕ ПОД ГРУЗОМ, ПОДНИМАЕМЫМ КРАНОМ!

Руководствуйтесь общими правилами выполнения погрузочно-разгрузочных работ.

До окончательной фиксации насоса (агрегата) по месту установки, следует принять меры, предотвращающие его случайное падение или смещение. Не следует заводить стропы за выступающий конец вала или корпус электродвигателя.

Соскальзывание строп с насоса /агрегата при погрузке-разгрузке может вызвать ранения персонала или повреждения оборудования

4.2 КОНСЕРВАЦИЯ / ХРАНЕНИЕ

Насосы (агрегаты), хранимые длительное время (но НЕ СВЫШЕ 6 МЕСЯЦЕВ) до установки, должны быть надежно защищены от влажности, вибрации, грязи, желательно, с обертыванием промасленной бумагой, или с упаковкой полиэтиленом. Место хранения должно надежно защищать оборудование от погодно-климатических воздействий: как минимум, рекомендуется надежный навес. ВСЕ ПАТРУБКИ НАСОСА должны быть надежно перекрыты заглушками.

При необходимости хранения более 6 месяцев, следует принять особые меры по консервации всех обработанных неокрашенных поверхностей и обеспечить упаковку, предотвращающую конденсацию влаги изнутри.

5. МОНТАЖ / УСТАНОВКА

5.1 MOHTAW HACOCA /AFPEFATA.

Насосы моделей LR, LMR, LMZ можно устанавливать непосредственно в трубопровод. Насосы с опорой следует надежно закрепить на бетонном фундаменте, стальной плите, балке или нс др. жестком основании, способном выдерживать все нагрузки, возникающие в процессе эксплуатации. Место, где монтируется насос, должно быть подготовлено в соответствии с размерами, указанными на габаритном чертеже

- Место установки насоса должно обеспечивать свободный доступ для проведения технического обслуживания и ремонта, включая замену приводного электродвигателя или всего агрегата. Вентилятор двигателя следует размещать с учетом свободного поступления к нему как можно менее загрязненного воздуха. МИНИМАЛЬНОЕ РАССТОЯНИЕ ОТ ВОЗДУХО-ЗАБОРНОЙ РЕШЕТКИ ВЕНТИЛЯТОРА ДО СТЕН И Т.П. ПРЕПЯТСТВИЙ 10см.
 - Установив насос на опору, следует выровнять патрубки. Анкерные болты должны быть залиты в фундамент.
 - Фундамент (опору) насоса следует максимально защитить от передачи вибраций со стороны прочего оборудования: такие вибрации опасны для подшипников!
 - Для предотвращения вибраций, передаваемых от другого оборудования, следует размещать фундамент на изолирующем основании
- Тип и размеры виброгасителей, амортизаторов, т.п. средств защиты выбираются применительно к каждой конкретной ситуации соответственно квалифицированными специалистами

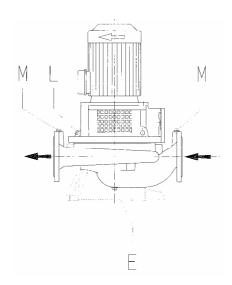
5.2 ПРИСОЕДИНЕНИЕ ТРУБОПРОВОДОВ К НАСОСУ.

НЕДОПУСТИМО ИСПОЛЬЗОВАТЬ НАСОС КАК ЕДИНСТВЕННУЮ ОПОРУ ПОДВЕДЕННЫХ К НЕМУ ТРУБОПРОВОДОВ! Нагрузки от трубопроводов на патрубки не должны превышать указанных в п. 3.6.

5.2.1 Присоединение всасывающего напорного трубопроводов.

- Диаметры и расположение трубопроводов не должны затруднять протекание раствора и работу насоса в целом. Особенное внимание следует обратить на герметичность соединений и соблюдение допустимого кавитационного запаса. При размещении насоса выше резервуара, из которого будет производиться всасывание, горизонтальную часть всасывающего трубопровода следует выполнить с подъемом к насосу, предотвращающим формирование воздушных мешков. НЕ ДОПУСКАЕТСЯ УСТАНОВКА колен, фитингов и т.п. НЕПОСРЕДСТВЕННО ПЕРЕД ВСАСЫВАЮЩИМ ПАТРУБКОМ.
- Трубопровод для прямой установки насосов LR-, LMR- или LMZ- должен обладать достаточной жесткостью. Примите во внимание изоляцию от вибрации (см.гл.5.1).
- Размещение трубопроводов не должно препятствовать техническому обслуживанию и ремонту агрегата вплоть до полной его разборки.
- Проверьте соответствие фактических нагрузок на фланцы насоса величинам, указанным в п. 3.7. «Допустимые нагрузки на фланцы».
 - Перед присоединением трубопроводов, удалите заглушки из всасывающего и напорного патрубков насоса.

- Перед вводом насоса в эксплуатацию, тщательно очистите связанные с ним трубопроводы и оборудование от грязи, стружек, отходов сварки и т.п. НАСОСЫ СИСТЕМ ПИТЬЕВОГО ВОДОСНАБЖЕНИЯ ПОДЛЕЖАТ СПЕЦИАЛЬНОМУ ОБЕЗЗАРАЖИВАНИЮ.
- Для защиты уплотнения (особенно МЕХАНИЧЕСКОГО) от повреждения твердыми частицами, первый пуск агрегата рекомендуется производить с 800-микронной фильтрующей сеткой на всасывающем патрубке.
- ПРИ НЕОБХОДИМОСТИ ИСПЫТАНИЙ ТРУБОПРОВОДНОЙ СИСТЕМЫ С УЖЕ СМОНТИРОВАННЫМ НАСОСОМ, не допускать превышения указанных в технической документации на конкретный насос максимальных величин давления в корпусе насоса и уплотнения.
- Опорожняя смонтированную систему после гидравлических испытаний, следует принять меры, не допускающие загрязнение, коррозию и т.п. повреждения насоса, способные затруднить его дальнейший пуск.


5.2.2 Дополнительные соединения насоса LR Возможны следующие дополнительные

Соединение	Наименование	Размеры
Е	Дренаж насоса	R3/8"
L	Отвод воздуха	R1/8"
M	Датчик давления	R3/8"

5.2.3 Дополнительные соединения насоса LMR, LMZ

Возможны	следующие	дополнительные
соединения:		

Соединение	Наименование	Размеры
E	Дренаж насоса	R3/8"
L	Отвод воздуха	R1/4"
M	Датчик давления	R1/4"

5.3 ПРИВОД

Конструкция двигателя насоса показана в подтверждении Заказа или табличке насоса. Примите во внимание Инструкции по эксплуатации двигателя, предоставленные фирмойпроизводителем.

В процессе ремонта нового двигателя необходимо иметь ввиду следующее:

- Двигатель должен соответствовать требованиям, указанным в листе 1130.1A608 (заказ от фирмыпроизводителя, по запросу).
- Тщательно зачистите концевую часть двигателя и фланец двигателя (снимите нагар).

5.4 ПОДКЛЮЧЕНИЕ К ЭЛЕКТРОСЕТИ

ВСЕ электромонтажные работы должны выполняться соответственно квалифицированным и допущенным персоналом при соблюдении действующих правил техники безопасности, местного законодательства по энергоснабжению, инструкций конкретных предприятий и производств.

До начала электромонтажных работ, необходимо убедиться, что параметры местной электросети соответствуют указанным на табличке конкретного агрегата. Кабель к двигателю подключать согласно документации на последний, обязательно установив автоматический защитный выключатель

Направление вращения можно проверить только, когда насос заполнен. «Сухой прогон» может вызвать повреждение насоса

5.5 ПРОВЕРКА ВЫПОЛНЕННОГО МОНТАЖА.

Вал правильно собранного и установленного агрегата должен легко проворачиваться рукой.

соединения:

6. ПУСК, РАБОТА, ОСТАНОВ.

Пуск агрегата должен осуществляться работниками, знакомыми с настоящей Инструкцией, включая, ПРЕЖДЕ ВСЕГО, требования по технике безопасности и со специфическими условиями конкретного производства.

6.1 ЗАПУСК ВНОВЬ УСТАНОВЛЕННОГО АГРЕГАТА

Перед первым пуском, убедитесь, что:

- Насос не требует смазки.
- Насос и его всасывающий трубопровод полностью залиты раствором.
- При вертикальном монтаже камера уплотнения должна быть провентелирована перед первоначальным пуком (клапан отвода воздуха L).
- Вал насосного агрегата вращается легко и без заеданий (еще раз проверните вал рукой).
- Убедитесь, что защитные пластины фонарного кольца установлены и все устройства безопасности находятся в рабочем состоянии.
- Задвижка на всасывающем трубопроводе ОТКРЫТА.
- Задвижка на напорном трубопроводе ОТКРЫТА приблизительно на четверть от номинального положения. НАСОСЫ С СЕЧЕНИЕМ НАПОРНОГО ТРУБОПРОВОДА МЕНЕЕ 200 ДОПУСКАЕТСЯ ПУСКАТЬ ПРИ ПОЛНОСТЬЮ ПЕРЕКРЫТОЙ ЗАДВИЖКЕ.
- Все электрические соединения выполнены согласно требованиям техники безопасности; в цепях предусмотрены адекватные средства защиты.
- Фактическое направление вращения вала соответствует стрелке на фонаре агрегата (проверить кратковременным включением электродвигателя).

6.2. ЗАПУСК ПРИВОДА

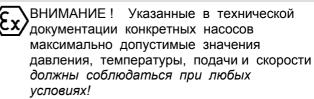
■ Незамедлительно: максимум через 30 секунд для частоты питающего тока 50 Гц и через 20 секунд для 60 Гц., по достижении приводом заданной рабочей скорости, открыть задвижку напорного трубопровода до достижения необходимого рабочего режима согласно технической документации и/или табличке на конкретном насосе. ВСЕ ОТСТУПЛЕНИЯ ОТ ТАКИХ ПРЕДПИСАНИЙ ДОПУСКАЮТСЯ ЛИШЬ ПО СОГЛАСОВАНИЮ С ПРЕДПРИЯТИЕМ-ИЗГОТОВИТЕЛЕМ!

НЕ ДОПУСКАЕТСЯ работа насоса с полностью закрытыми задвижками на всасывающем и/или напорном трубопроводах

Возможное при запуске отсутствие встречного давления следует компенсировать дросселированием задвижки напорного патрубка, которую открыть затем по достижении нормального встречного давления.

ЕСЛИ ПУЩЕННЫЙ НАСОС НЕ СОЗДАЕТ РАСЧЕТНЫЙ НАПОР, и/или ЕСЛИ В ХОДЕ ПУСКА ВОЗНИКАЮТ НЕОБЫЧНЫЕ ШУМЫ, ЧРЕЗМЕРНАЯ ВИБРАЦИЯ, то следует остановить агрегат согласно п. 6.7, выявить и устранить неисправность, руководствуясь Главой 10

6.3 ПОВТОРНЫЙ ПУСК.


В целом, при повторном пуске выполняются те же операции, что и при первом, исключая проверки подключения и направления вращения.

ПРИМЕНЕНИЕ УСТРОЙСТВ АВТОМАТИЗАЦИИ ПОВТОРНОГО ПУСКА разрешается, если проверено, что насос все время бездействия остается заполненным раствором.

Работая с временно остановленным насосом, остерегайтесь касания сильно нагревшихся при работе деталей и открытых участков вала. БУДЬТЕ ПРЕДЕЛЬНО ОСТОРОЖНЫ С АГРЕГАТАМИ, ПОВТОРНЫЙ ПУСК КОТОРЫХ АВТОМАТИЗИРОВАН, т.е. может произойти в любую минуту: для таких ситуаций необходимо установить подобающую сигнализацию

6.4 ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ

- НЕ ДОПУСКАЕТСЯ превышать мощность, указанную на табличке двигателя.
- Избегайте резких колебаний температуры (тепловых ударов).

 НЕ РЕЖЕ ОДНОГО РАЗА В НЕДЕЛЮ следует убеждаться в том, что агрегат работает плавно, без чрезмерной вибрации.

6.4.1 Минимальная и максимальная подача. ПРИ ОТСУТСТВИИ КОНКРЕТНЫХ ДАННЫХ В ФОРМЕ ГРАФИКОВ ИЛИ ТАБЛИЦ, оптимальное значение подачи:

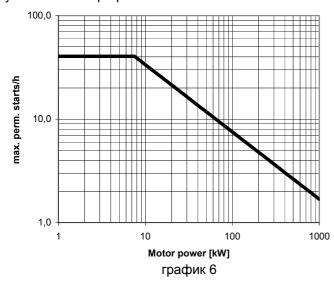
Qмин. = QBEP следует умножать на коэффициент 0,1 для кратковременной эксплуатации

Qмин. = QBEP следует умножать на коэффициент 0,3 – для длительно-непрерывной,

Qмакс.= QBEP следует умножать на коэффициент1,2 - для длительно-непрерывной, *)

QBEP = к.п.д. в точке наивысшей эффективности

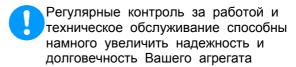
*) *если* допустимый кавитационный запас системы в целом превышает величину кавитационного запаса насоса + 0,5 м.


6.4.2 Абразивные среды

Растворы с повышенным содержанием абразивных частиц вызывают ускоренный износ проточной части и уплотнения, которые, соответственно, требуется чаще осматривать и ремонтировать

6.4.3 Допускаемое количество повторных пусков агрегата в час

Допускаемое количество повторных пусков агрегата в час не должно превышать данные, указанные на графике 6


max. perm. starts/h – макс. допустимое количество повторных пусков в час Motor power, kW – мощность двигателя в кВт.

Если документацией на конкретный двигатель предусмотрено иное количество повторных пусков, - следует ориентироваться на МЕНЬШЕЕ значение

6.5 CMA3KA

Насос не имеет подшипников и, следовательно, нет необходимости в смазке. Если потребуется смазка подшипников двигателя, то см. Инструкцию по эксплуатации и техническому обслуживанию, предоставленную фирмой-производителем двигателя.

6.6 МОНИТОРИНГ РАБОТЫ АГРЕГАТА.

■ Насосы, перекачивающие растворы, способные вызвать усиленную коррозию, а также растворы с повышенным содержанием абразивных частиц, должны регулярно осматриваться для своевременного выявления повреждений. ПЕРВЫЙ такой ОСМОТР рекомендуется произвести не позднее 6 МЕСЯЦЕВ ПОСЛЕ ВВОДА АГРЕГАТА В ЭКСПЛУАТАЦИЮ; периодичность следующих осмотров определяется фактическим состоянием насоса и условиями его эксплуатации.

6.7 ПРЕКРАЩЕНИЕ РАБОТЫ.

- Закрыть задвижку на напорном трубопроводе непосредственно перед (макс. за 10 сек.) выключением двигателя. Данная операция необязательна при наличии в системе пружинного управляющего клапана.
- НЕЗАМЕДЛИТЕЛЬНО, В ТЕЧЕНИЕ МАКСИМУМ 10 секунд ПОСЛЕ ЗАКРЫТИЯ ЗАДВИЖКИ, отключить электродвигатель, проследив, чтобы тот замедлил вращение и остановился плавно, без чрезмерной вибрации и посторонних звуков.
- Закрыть задвижку на всасывающем трубопроводе.
- ПРИ УГРОЗЕ ЗАМЕРЗАНИЯ РАСТВОРА следует полностью слить его из системы

6.8 ХРАНЕНИЕ / ДЛИТЕЛЬНЫЕ ПЕРЕРЫВЫ В РАБОТЕ

6.8.1 Хранение новых насосов до ввода в эксплуатацию.

Если ввод в эксплуатации состоится через длительное время после поставки, то мы рекомендуем следующие меры для хранения насоса:

- Разместить насосы в сухом, защищенном от атмосферных воздействий, месте;
- Не реже одного раза в месяц проворачивать валы насосов рукой.

6.8.2 Методы хранения насосов готовых в эксплуатации.

Для насосов, смонтированных и готовых к эксплуатации, рекомендуются не реже, чем ЕЖЕНЕДЕЛЬНЫЕ пробные пуски по 5 минут; конкретная периодичность таких пусков определяется местными условиями.

6.8.3 При длительных перерывах в работе рекомендуется:

Запускать насосы как при первоначальном пуске (см.Главу 6).

а) для насосов, остающихся заполненными раствором:

 Производить кратковременные ЕЖЕНЕДЕЛЬНЫЕ пуски; по возможности использовать как подмену

- эксплуатируемых в данное время насосов.
- ДЛЯ НАСОСОВ, ПРОСТАИВАЮЩИХ БЕЗ СНЯТИЯ РАБОЧИХ ДАВЛЕНИЯ И/ИЛИ ТЕМПЕРАТУР, следует сохранять в действии имеющуюся подачу уплотняющей и/или охлаждающей жидкостей.
- ПОДШИПНИКИ ДВИГАТЕЛЯ ЗАМЕНЯТЬ ЧЕРЕЗ КАЖДЫЕ 5 ЛЕТ, независимо от того, эксплуатировался насос или простаивал.

б) для насосов, хранящихся БЕЗ РАСТВОРА:

• ЕЖЕНЕДЕЛЬНО проворачивать вал рукой (ДВИГАТЕЛЬ НЕ ВКЛЮЧАТЬ во избежание работы «посуху»!); ПОДШИПНИКИ ДВИГАТЕЛЯ ЗАМЕНЯТЬ ЧЕРЕЗ КАЖДЫЕ 5 ЛЕТ, независимо от того, эксплуатировался насос или простаивал.

7. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И УХОД.

7.1 ОБЩИЕ УКАЗАНИЯ.

Все виды технического обслуживания выполнять лишь на ОСТАНОВЛЕННЫХ агрегатах, соблюдая требования, приведенные выше в Главе 2.

Техническое обслуживание агрегатов рекомендуется поручать

официальным представителям заводауизготовителя, а при невозможности такого лицам, знакомым с конструкцией агрегата и с настоящей Инструкцией, имеющим опыт выполнения аналогичных работ

7.2 МЕХАНИЧЕСКИЕ УПЛОТНЕНИЯ.

Перед разборкой насоса еще раз изучите Главы 2 и 8 настоящей Инструкции!

Подтекание перекачиваемого раствора через механическое уплотнение показывает, что уплотнение износилось и требует замены.

7.3 ПОДШИПНИКИ ЭЛЕКТРОДВИГАТЕЛЯ

Замена подшипников рекомендуется по истечении 25 000 часов работы, если иное не предусмотрено технической документацией на конкретный двигатель. В ЛЮБОМ СЛУЧАЕ, подшипники следует заменить через 5 лет после приобретения двигателя: на больший срок не рассчитана применяемая смазка!

7.4 ЧИСТКА НАСОСА.

Грязь, скапливающаяся на внешних поверхностях насоса, значительно ухудшает теплообмен, и потому - должна регулярно удаляться смыванием по мере появления.

ЗАПРЕЩАЕТСЯ ОБМЫВАТЬ НАСОС СТРУЕЙ ВОДЫ ПОД ДАВЛЕНИЕМ:

вода может попасть в подшипники, нарушить изоляцию двигателя и тому подобного электрооборудования.

8. РАЗБОРКА И РЕМОНТ НАСОСА.

8.1 ОБЩИЕ УКАЗАНИЯ.

ДЛЯ ВЫПОЛНЕНИЯ РЕМОНТНЫХ РАБОТ НАСТОЯТЕЛЬНО РЕКОМЕНДУЕМ ПРИГЛАШАТЬ СПЕЦИАЛИСТОВ ЗАВОДАИЗГОТОВИТЕЛЯ

При разборке насоса строго руководствуйтесь требованиями Глав 2 и 4 1

При желании для монтажа и ремонта можно вызвать специалистов

ВНИМАНИЕ! НАСОС, ПЕРЕКАЧИВАВШИЙ ОПАСНЫЕ ВЕЩЕСТВА, перед разборкой следует тщательно очистить в соответствии с действующими санитарными нормами: промыть, продуть, дезинфицировать и т.п. ПРОСТО СЛИТЬ РАСТВОР НЕДОСТАТОЧНО: ВНУТРИ МОЖЕТ ОСТАТЬСЯ ОПАСНЫЙ ОСАДОК. При необходимости насос следует промыть и провести обеззараживание. Следует соблюдать санитарные нормы, в противном случае существует угроза для здоровья.

- Перед разборкой насоса следует принять все возможные меры для редотвращения его случайного пуска до окончания работ;
- Из корпуса насоса следует полностью слить раствор и стравить давление;
- Закрыть BCE задвижки на всасывающем и напорном трубопроводах;
- Выждать, пока температура BCEX частей не будет отличаться от температуры в помещении.

Место разборки насоса должно быть оборудовано так, чтобы исключить риск падения или скатывания со стола отдельных деталей, случайных ударов детали о деталь и т.п. повреждений.

ПРИ НЕОБХОДИМОСТИ ВОСПОЛЬЗОВАТЬСЯ ПАЯЛЬНОЙ ЛАМПОЙ ИЛИ ДРУГИМ ИСТОЧНИКОМ ОТКРЫТОГО ОГНЯ, предварительно убедитесь, что это не повлечет за собой пожар, взрыв или образование опасных паров!.

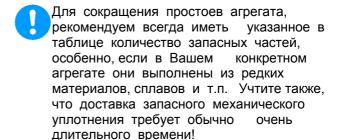
Используйте только запасные части, рекомендуемые заводом- изготовителем, обращая внимание на применимость их материала, габаритных размеров и др. для конкретного насоса в конкретных условиях эксплуатации!

8.2 ОБЩАЯ ИНФОРМАЦИЯ.

Разборку и последующую сборку насоса выполнять согласно чертежам-разрезам. Разборка-сборка насосов НЕ ТРЕБУЮТ специальных инструментов и приспособлений. Перед разборкой приготовьте все части,

какие могут потребоваться для ремонта. Не разбирайте агрегат более того, чем требуется для устранения случившейся неисправности.

8.3 Защита муфты, замена двигателя.


Убедитесь, что никто не включит насос в то время, кода производится установка муфты. В соответствии с Правилами по предотвращению несчастных случаев насосная установка может работать только с установленной защитой муфты

Внутри защиты муфты (поз.95 на чертеже – разрезе) зажата установочная вилка. Она необходима как инструмент при замене двигателя.

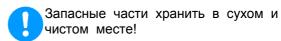
9. ЗАПАСНЫЕ ЧАСТИ И РЕЗЕРВНЫЕ НАСОСЫ.

9.1 ЗАПАСНЫЕ ЧАСТИ.

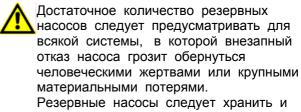
Запасные части следует выбирать в расчете на ДВУХГОДИЧНУЮ НЕПРЕРЫВНУЮ РАБОТУ агрегата. При отсутствии иных указаний, рекомендуем создать запас таких частей сообразно приведенной ниже таблице и нормам DIN 24296

	Количество частей, которое рекомендуется иметь в запасе при количестве установленных насосов (включая резервные) :									
	2	3	4	5	6/7	8/9	10/+			
Запасные части	Колич	ество	запас	ных ч	астей					
Рабочее колесо	1	1	1	2	2	2	20%			
Вал со шпонками и гайками	1	1	1	2	2	2	20%			
Соединения для корпуса насоса комплектов	4	6	8	8	9	12	150%			
Другие соединения комплектов	4	6	8	8	9	10	100%			
Уплотнение механическое	1	1	2	2	2	3	25%			
комплектов										
Двигатель	1	1	2	2	3	4	50%			
Приводной блок в сборе	-	-	-	-	-	1	2			

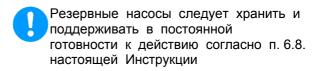
ПРИ ЗАКАЗЕ ЗАПАСНЫХ ЧАСТЕ	при ЗАК	A3E 3	AHAC	ных	YACTI	ΞИ
---------------------------	---------	-------	------	-----	--------------	----


заказ №:

просим соооща	ать следующие	данные:
---------------	---------------	---------


•	тип.	

•	разрез	Nº
---	--------	----


Всю необходимую для заказа информацию см. в перечнях и на чертежах-разрезах

9.2 РЕЗЕРВНЫЕ НАСОСЫ.

поддерживать в постоянной готовности к действию согласно п. 6.8. настоящей Инструкции

10. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕРЫ ПО ИХ УСТРАНЕНИЮ.

Ниже приводятся рекомендации по наиболее вероятным неисправностям, которые Вы можете устранить самостоятельно, или обратившись в наш Отдел Обслуживания Клиентов. Решив действовать самостоятельно, соблюдайте, пожалуйста, требования Главы 2 настоящей Инструкции и технической документации на конкретные насосы. Сложные вопросы СЛЕДУЕТ СОГЛАСОВЫВАТЬ С ЗАВОДОМ-ИЗГОТОВИТЕЛЕМ В ПИСЬМЕННОМ ВИДЕ

Недостаточная подача	Самопроизвольное прекращение подачи через некоторое время после пуска	Недостаточный напор	Чрезмерный напор	Перегрузка электродвигателя	Насос вращается неравномерно	Перегрев насоса	Перегрев уплотнения вала	Перегрев подшипника	Протечка раствора	Чрезмерная утечка через уплотнение вала	причина	рекомендации
											Чрезмерное обратное	-проверить, не засорилась ли система
•											давление	открыть задвижку напорного трубопровода - при необходимости — установить фильтр -установить более крупное рабочее колесо (с учетом мощности имеющегося двигателя!)
		•		•				•			Недостаточные обратное давление и/ли подача	-дросселировать задвижку напорного трубопровода
			•	•							Чрезмерно высокая скорость	-уменьшить скорость -проверить соответствие скоростей конкретных насоса и двигателя по технической документации -при необходимости воспользоваться электронным регулятором скорости - произвести предварительные расчеты
•		•									Чрезмерно низкая скорость	-увеличить скорость (проверьте возможности двигателя) -проверить соответствие скоростей конкретных насоса и двигателя по технической документации -при необходимости воспользоваться электронным регулятором скорости - произвести предварительные расчеты
	•	•			•	•					Недостаточная подача	-повысить подачу открытием задвижек или установкой байпасса
								•			Чрезмерная подача	-уменьшить подачу прикрытием задвижки напорного трубопровода
			•	•							Чрезмерный диаметр рабочего колеса	-установить колесо меньшего диаметра
•		•									Недостаточный диаметр рабочего колеса	-установить колесо большего диаметра (с учетом мощности имеющегося двигателя!)
•		•			•	•					Насос и/ли трубопроводы недостаточно залиты	-залить, стравить воздух из системы
•	•	•									Засор насоса и/ли трубопроводов	-прочистить систему
•		•									Воздушный мешок в трубопроводе	-стравить воздух, по возможности- улучшить положение трубопровода
•	•	•			•	•					Чрезмерное давление на входе/ малый кавитационный запас	-повысить уровень раствора в исходном резервуаре -уменьшить сопротивление на всасывании (

									системы	очистить трубопровод и/ли фильтр, открыть задвижку, изменить диаметр и/ли степень уклона трубопровода)
•	•	•							Подсос воздуха в систему	-повысить уровень раствора в исходном резервуаре -проверить герметичность соединений всасывающего трубопровода
•	•	•							Подсос воздуха через уплотнение вала	-очистить камеру уплотнения -повысить давление в камере уплотнения -заменить уплотнение новым
•		•							Неправильное направление вращения вала	-поменять местами любые два фазовые провода в клеммной коробке (операция выполняется КВАЛИФИЦИРОВАННЫМ ЭЛЕКТРИКОМ!)
•		•		•		•			Чрезмерный износ внутренних деталей	-заменить изношенные детали
•		•	•						Чрезмерные плотность и/ли вязкость раствора	-обратиться к нашим специалистам
					•			•	Задиры и шероховатости на поверхности вала	-заменить вал
					•			•	Осадок на частях механического уплотнения	-очистить или заменить уплотнение; при необходимости - усилить подачу уплотняющей и/ли охлаждающей жидкостей
				•				•	Рабочее колесо разбалансировано	-очистить колесо от осадка и загрязнений -в случае ПОВРЕЖДЕНИЙ или НЕРАВНОМЕРНОГО ИЗНОСА -заменить колесо -проверить валы на исправность и биение
			•	•		•	•	•	Чрезмерные усилия на насос от трубопроводов	-дополнительно подпереть трубопроводы, установить амортизаторы, компенсаторы и т.п -при монтаже агрегата на фундаменте - проверить исправность и прочность последнего
			•						Нарушено энергоснабжение («выпадение» фазы)	-проверить напряжение по ВСЕМ фазам -проверить ВСЕ электрические соединения, предохранители защитные устройства
							•		Уплотнение недостаточно эффективно	-попробовать подтянуть винты; при неудаче -заменить уплотнение
				•		•			Повреждение подшипника	-заменить подшипник
						•			Недостаточная циркуляция жидкости	-прочистить отверстия рабочего колеса -при необходимости, заменить изношенные кольца, рабочее колесо и т. потрегулировать давление в насосе и в системе
				•					Вибрации (резонанс) в пределах системы	-обратиться к нашим специалистам

11. ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ ЭЛЕКТРОДВИГАТЕЛЕЙ ТИПОВ SM, LM, DPIG, DPIH

С настоящей Инструкцией следует ознакомить всех лиц, привлекаемых к монтажу, эксплуатации и техническому обслуживанию указанных электродвигателей, ДО НАЧАЛА РАБОТ. НЕСОБЛЮДЕНИЕ ИНСТРУКЦИИ чревато травмами, авариями и прекращением заводской гарантии.

11.1 СФЕРА ПРИМЕНЕНИЯ ИНСТРУКЦИИ.

Настоящая Инструкция распространяется на электродвигатели МОДЕЛЕЙ LM ТИПОРАЗМЕРОВ 71-132 по нормам IEC и МОДЕЛЕЙ DPIG и DPIH ТИПОРАЗМЕРОВ 80-225 по нормам IEC.

Дополнительная информация, может потребоваться для некоторых типов двигателей

ввиду специальных условий применения и/или конструктивных особенностей.

Соответствующие модели/типоразмеры указываются на заводской табличке электродвигателя и/или в его сопроводительной документации.

ПО ПОВОДУ ИНЫХ ДВИГАТЕЛЕЙ - см. соответствующие инструкции.

В СЛУЧАЕ ЗАТРУДНЕНИЙ С ОПРЕДЕЛЕНИЕМ МОДЕЛИ/ТИПОРАЗМЕРА, ОБРАЩАЙТЕСЬ НА ПРЕДПРИЯТИЕ-ИЗГОТОВИТЕЛЬ КОНКРЕТНОГО ДВИГАТЕЛЯ.

11.2 ПРИЕМКА ДВИГАТЕЛЯ

11.2.1 Осмотр при получении

Убедиться в отсутствии повреждений; проверить, соответствуют ли указанные на табличке двигателя данные (В ПЕРВУЮ ОЧЕРЕДЬ - напряжение сети и соединение обмоток: «треугольником» или «звездой») условиям предстоящей эксплуатации

11.2.2 Проверка сопротивления изоляции ВЫПОЛНЯЕТСЯ ПРИ ПОЛУЧЕНИИ НОВОГО ДВИГАТЕЛЯ, а также ВСЯКИЙ РАЗ, КОГДА ВОЗНИКАЮТ ОПАСЕНИЯ В ОТСЫРЕВАНИИ И ДР. НАРУШЕНИЯХ ИЗОЛЯЦИИ.

Сопротивление изоляции, замеряемое при $+25^{\,0}$ С, не должно быть менее вычисленного по формуле

 $Ri \ge (20 \text{ x U}) / (1000 + 2P),$ г д е: U - напряжение электросети, В.

Р - мощность двигателя, кВт. ВО ИЗБЕЖАНИЕ ЭЛЕКТРОТРАВМ, НЕЗАМЕДЛИТЕЛЬНО ПОСЛЕ

ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ СЛЕДУЕТ ПРИНЯТЬ МЕРЫ ПО УДАЛЕНИЮ С ОБМОТОК ОСТАТОЧНОГО ЗАРЯДА

Для температур, превышающих указанную, вычисляемую по формуле величину уменьшать вдвое на каждые $20\,^{\circ}$ С сверх номинала. ЕСЛИ ЗАМЕРЕННОЕ СОПРОТИВЛЕНИЕ $H\,U\,\mathcal{K}$ E ВЫЧИСЛЕННОГО ПО ФОРМУЛЕ, ДАЛЬНЕЙШИЕ РАБОТЫ ПРОИЗВОДИТЬ ЛИШЬ ПО СОГЛАСОВАНИЮ С ПРЕДПРИЯТИЕМИЗГОТОВИТЕЛЕМ ДВИГАТЕЛЯ, т.е. с компанией VOGEL!

ЯВНО ОТСЫРЕВШИЕ ОБМОТКИ просушить в течение 12-16 часов при температуре $+90\,^{\circ}$ С, затем - еще 6-8 часов при $+105\,^{\circ}$ С, ВЫВЕРНУВ ДРЕНАЖНЫЕ ЗАГЛУШКИ, ЕСЛИ ТАКОВЫЕ ПРЕДУСМОТРЕНЫ В КОРПУСЕ ДВИГАТЕЛЯ. ОБМОТКИ, ОТСЫРЕВШИЕ ОТ МОРСКОЙ ВОДЫ, СЛЕДУЕТ ПЕРЕМОТАТЬ.

11.3. ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ

11.3.1 Условия эксплуатации

Привод промышленного оборудования при температурах окружающего воздуха от -25 $^{\circ}$ С до +40 $^{\circ}$ С на высоте не более 1 000 м. над уровнем моря.

11.3.2 Требования техники безопасности.

Электродвигатели должны устанавливаться и эксплуатироваться *только* соответственно квалифицированным, ознакомленным с правилами техники безопасности персоналом. Средства и мероприятия по защите от несчастных случаев при монтаже и эксплуатации двигателей должны соответствовать законодательству Вашего государства по технике безопасности.

Данные электродвигатели *НЕ* ПРЕДНАЗНАЧЕНЫ для эксплуатации в условиях наличия газов и др. взрывоопасных веществ!

Для *МАЛЫХ ТИПОРАЗМЕРОВ* допустим автоматический пуск посредством температурных датчиков

ВАЖНЫЕ ПРАВИЛА:

- На двигатель НЕ СТАНОВИТЬСЯ;
- Нагрев корпуса при НОРМАЛЬНОЙ РАБОТЕ может вызывать ожоги от случайного прикосновения;
- Особые случаи использования двигателей (в частности, с электронными регуляторами скорости) регламентируются дополнительными инструкциями.

11.3.3 Максимально допустимая частота повторных пусков в час:

Для двигателей моделей DPIG, DPIH, SM, LM **мощностью более 7,5 кВт.** - см. диаграмму 6.4.3.

Макс. 20 для двигателей МОДЕЛИ LM мощностью до 7,5 кВт.

11. ПЕРВЫЙ ПУСК НОВОГО ДВИГАТЕЛЯ.

11.4.1 Отверстия для слива конденсата (в МОДЕЛЯХ DPIG / DPIH). ...

Стандартизованные двигатели с типоразмерами рам 90-112 выпускаются БЕЗ дренажных отверстий, однако, при необходимости, такие отверстия можно просверлить перед монтажом так, чтобы после установки двигателя они были бы направлены ВЕРТИКАЛЬНО ВНИЗ.

При сверлении дренажных отверстий опасайтесь повредить обмотки двигателя.

Двигатели типоразмеров рамы 56-80 и 132-225 выпускают с дренажными отверстиями, которые следует периодически открывать для слива

накапливающегося внутри конденсата; периодичность и длительность открывания определяются конкретными условиями эксплуатации. ЕСЛИ ПРЕДУСМОТРЕННЫЕ В ДВИГАТЕЛЕ ДРЕНАЖНЫЕ ОТВЕРСТИЯ ПРИ МОНТАЖЕ НЕВОЗМОЖНО НАПРАВИТЬ ВЕРТИКАЛЬНО ВНИЗ, - ИХ СЛЕДУЕТ ЗАГЛУ-ШИТЬ, ПРОСВЕРЛИВ ВЗАМЕН ВЕРТИКАЛЬНЫЕ!

11.4.2 Подключение к электросети

Двигатель к электросети подключать через выключатель, производящий разъединение ВСЕХ ФАЗ при отключении.

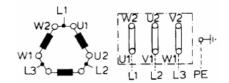
Допускается кратковременное подключение питающего кабеля непосредственно (без выключателя) к клеммам неработающего двигателя для просушивания обмоток.

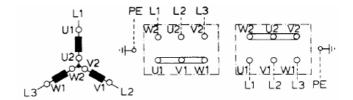
Все отверстия клеммной коробки, не используемые для подключения проводов, должны быть плотно закрыты заглушками. Электрические схемы подключения вспомогательных устройств приводятся на внутренней стороне крышки клеммной коробки. Для двигателей с электронными регуляторами скорости, монтируемых не на общей раме с приводимым ими в действие оборудованием, раму двигателя следует дополнительно заземлить проводником ПЛОСКОГО, а не круглого СЕЧЕНИЯ.

Пуск прямым включением в сеть или - переключением "звезда/треугольник".

В клеммной коробке стандартного односкоростного двигателя находятся шесть выводов обмоток и, как минимум, один заземляющий контакт, к которому следует подключить заземление, устроенное по действующим правилам электробезопасности, ДО ПОДКЛЮЧЕНИЯ ФАЗОВЫХ ПРОВОДОВ. Допустимые для каждого вида соединения обмоток величины напряжений указываются на табличке

Пуск прямым включением в сеть (DOL)


Может производиться при любом соединении обмоток с учетом указанного на табличке. ПРИМЕР: надпись «690 VY, 400 V Δ » означает допустимость использовать напряжение 690 В для «звезды» и 400 В для «треугольника».


Пуск переключением «звезда/треугольник»

ДОПУСКАЕТСЯ ПРИ НАПРЯЖЕНИЙ, УКАЗАННОМ ДЛЯ СОЕДИНЕНИЯ «ТРЕУГОЛЬНИКОМ».

Снимите все перемычки, установленные ранее в клеммной коробке. Для двухскоростных, однофазных или специальных двигателей следует руководствоваться схемами и

указаниями на табличках внутри клеммной коробки.

Клеммы и направление вращения

Направление вращения вала двигателя - ПРОТИВ ЧАСОВОЙ СТРЕЛКИ, если смотреть на вал со стороны его свободного конца - достигается подключением фазных проводников L1, L2, L3 в точном соответствии со схемой в клеммной коробке.

ПРИ НЕОБХОДИМОСТИ ИЗМЕНИТЬ НАПРАВЛЕНИЕ ВРАЩЕНИЯ, - поменяйте местами любые два фазные проводника.

У HACOCOB ТИПА DPIG и DPIH клеммная

коробка располагается СВЕРХУ (типоразмеры DPIG 56-180) или СПРАВА, если смотреть со стороны свободного конца вала (DPIG 200-225), существенно облегчая подключение.

ВСЕ НЕ ИСПОЛЬЗУЕМЫЕ ПРИ ПОДКЛЮЧЕНИИ ОТВЕРСТИЯ КЛЕММНЫХ КОРОБОК СЛЕДУЕТ ПЛОТНО ЗАКРЫВАТЬ ЗАГЛУШКАМИ.

Помимо выводов обмоток и заземляющих контактов, в клеммной коробке могут также размещаться контакты для подключения термисторов, элементов предпускового прогрева двигателя. биметаллических выключателей.

НАСОСЫ ТИПА LM подключать к сети согласно схеме в клеммной коробке. Электродвигатели трехфазного тока должны иметь защиту от перегрузки, устанавливаемую пользователем: желательно, защитный термовыключатель с ясно видимым указателем установленных параметров срабатывания, которые должны соответствовать указанным на табличке конкретного двигателя.

ПРИ НЕДОСТАТОЧНОМ ЗАЗЕМЛЕНИИ, в качестве дополнительного средства защиты от электрических ударов рекомендуется высокочувствительный (0.03 A.) дифференциальный выключатель

11.5 МОНТАЖ И РАЗБОРКА.

11.5.1 Общие указания

Монтаж и разборку электродвигателей должен осуществлять соответственно квалифицированный персонал с использованием предназначенных для того технологий и инструментов.

11.5.2 Подшипники

Требуют особо бережного отношения. Они должны демонтироваться при помощи предназначенных для того съемников, а устанавливаться в нагретом состоянии и/ли специальными инструментами.

11.6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И СМАЗКА.

11.6.1 Генеральная проверка

- Технические осмотры должны выполняться регулярно
- Очистить двигатель, убедиться в отсутствии помех для его вентиляции;
- Проверить состояние уплотнений вала (например, V-образных колец); износившиеся или поврежденные заменить;
- Проверить состояние всех соединений и затяжку крепежа;
- Проверить состояние подшипников путем прослушивания возникающих при работе шумов, измерения температуры и/ли вибрации, осмотра отработанной смазки.

11.6.2 Смазка

ВСЕ указанные двигатели поставляются с жировой смазкой подшипников, не требующей пополнения или замены весь расчетный срок службы.

ПРИ НОРМАЛЬНЫХ ТЕМПЕРАТУРАХ ПО МЕСТУ ЭКСПЛУАТАЦИИ ДВИГАТЕЛЯ, мы рекомендуем заменять подшипники согласно следующей таблице:

Скорость, об/мин.	Интервал смазки, часов	Время, месяцев
не свыше 1800	10000	24
от 1800	5000	12

Срок службы шариковых подшипников с глубокими канавками, приблизительно, 17500 часов работы.

Ranabiani, hprior	inoritoribilo, trocc	, lacob pacerbi.
Тип двигателя	Передний	Задний
	подшипник	подшипник
SM80RB5/307	6204 2RSH/C3-WT	6202 2RSH/C3-WT
SM80B5/311	6204 2RSH/C3-WT	6204 2RSH/C3-WT
SM90RB5/315	6205 2RSH/C3-WT	6204 2RSH/C3-WT
SM90RB5/322	6205 2RSH/C3-WT	6204 2RSH/C3-WT
LM100RB5/330	6206 2Z/C3-WT	6206 2Z/C3-WT
LM112RB5/340	6206 2Z/C3-WT	6206 2Z/C3-WT
LM132RB5/355	6308 2Z/C3-WT	6206 2Z/C3-WT

11.6.3 Размеры подшипников по типам двигателей

Тип подшипника
6201 ZZ
6202 2RS
6203 2RS
6204 2RS
6205 ZZ C3
0205 ZZ C3
6205 ZZ C3
6305 ZZ C3
6206 ZZ C3
0200 ZZ C3
6206 ZZ C3
6306 ZZ C3
6306 ZZ C3
6308 ZZ C3
6309 ZZ C3
6311 ZZ C3
6212 ZZ C3
6213 ZZ C3

11.6.4 Запасные части

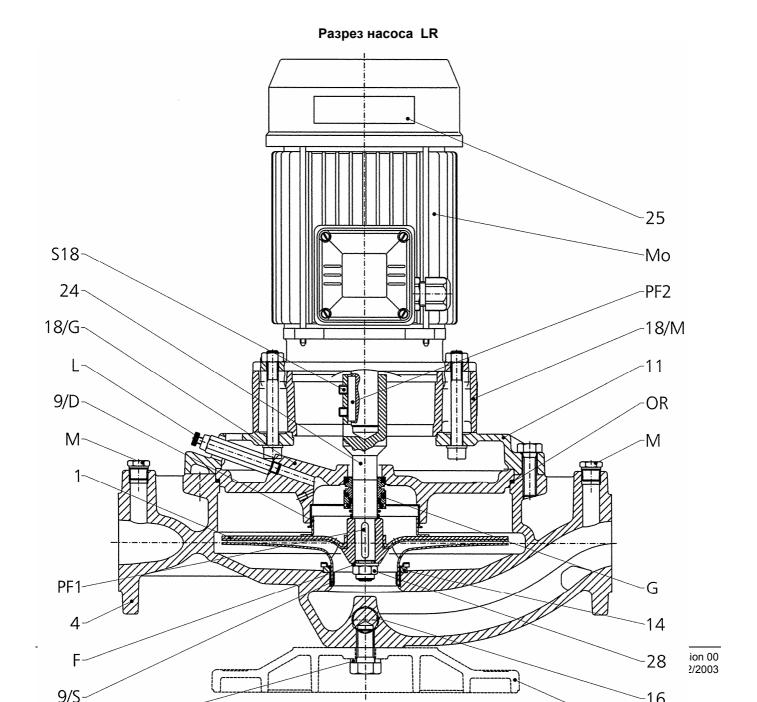
При заказе запасных частей необходимо давать полное обозначение типоразмера и код изделия так, как указано на табличке.

Если на изделии указан серийный номер, то необходимо также его указать..

11.6.5 Перемотка

Перемотку всегда должны выполнять квалифицированные специалисты.

11.7. Возможные неисправности – причины и рекомендации

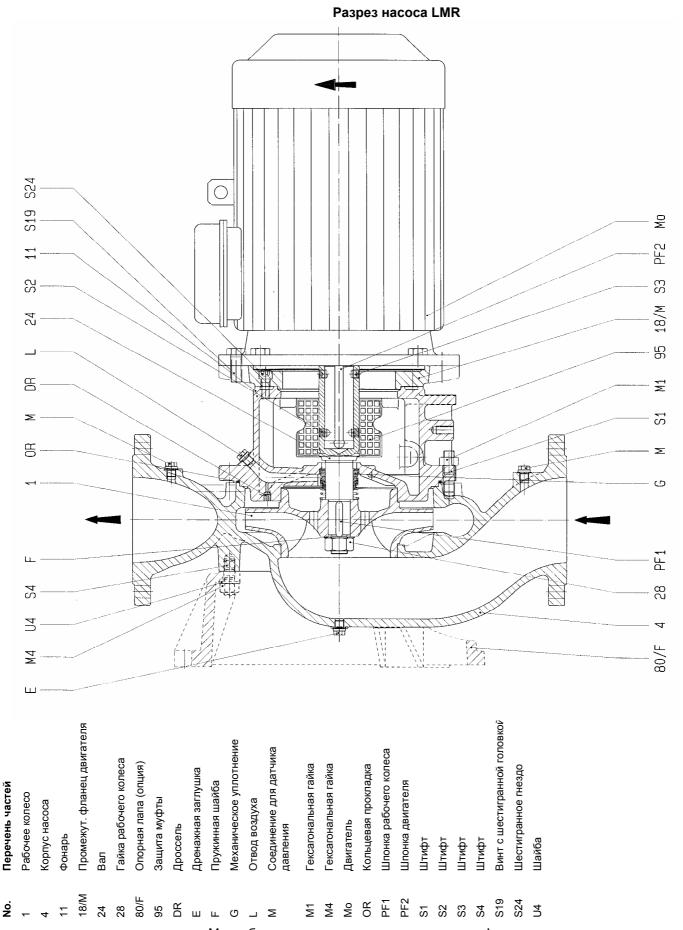

В приведенной ниже таблице невозможно описать все технические подробности или отличия между различными моделями двигателей, а также все возможные ситуации при установке, эксплуатации и техническом обслуживании.

Техническое обслуживание и устранение неисправностей двигателя должно выполняться квалифицированным персоналом с использованием соответствующих инструментов/приборов и средств

LM132RB5/375	6308 2Z/C3-WT	6206 2Z/C3-WT
LM160RB5/3110	6310 2Z/C3-WT	6308 2Z/C3-WT
LM160B35/3110	6310 2Z/C3-WT	6308 2Z/C3-WT
LM160B5/3150	6310 2Z/C3-WT	6309 2Z/C3-WT
LM160B35/3150	6310 2Z/C3-WT	6309 2Z/C3-WT
LM160B5/3185	6310 2Z/C3-WT	6309 2Z/C3-WT
LM160B35/3185	6310 2Z/C3-WT	6309 2Z/C3-WT
LM180RB5/3220	6310 2Z/C3-WT	6309 2Z/C3-WT
LM180RB35/3220	6310 2Z/C3-WT	6309 2Z/C3-WT
01110000000		
SM480B5/305	6204 2RSH/C3-WT	6204 2RSH/C3-WT
SM480B5/305 SM480B5/307	6204 2RSH/C3-WT 6204 2RSH/C3-WT	6204 2RSH/C3-WT 6204 2RSH/C3-WT
SM480B5/307	6204 2RSH/C3-WT	6204 2RSH/C3-WT
SM480B5/307 LM490B5/311	6204 2RSH/C3-WT 6205 2Z/C3-WT	6204 2RSH/C3-WT 6205 2Z/C3-WT
SM480B5/307 LM490B5/311 LM490B5/315	6204 2RSH/C3-WT 6205 2Z/C3-WT 6205 2Z/C3-WT	6204 2RSH/C3-WT 6205 2Z/C3-WT 6205 2Z/C3-WT
SM480B5/307 LM490B5/311 LM490B5/315 LM4100B5/322	6204 2RSH/C3-WT 6205 2Z/C3-WT 6205 2Z/C3-WT 6206 2Z/C3-WT	6204 2RSH/C3-WT 6205 2Z/C3-WT 6205 2Z/C3-WT 6206 2Z/C3-WT
SM480B5/307 LM490B5/311 LM490B5/315 LM4100B5/322 LM4100B5/330	6204 2RSH/C3-WT 6205 2Z/C3-WT 6205 2Z/C3-WT 6206 2Z/C3-WT 6206 2Z/C3-WT	6204 2RSH/C3-WT 6205 2Z/C3-WT 6205 2Z/C3-WT 6206 2Z/C3-WT 6206 2Z/C3-WT
SM480B5/307 LM490B5/311 LM490B5/315 LM4100B5/322 LM4100B5/330 LM4112B5/340	6204 2RSH/C3-WT 6205 2Z/C3-WT 6205 2Z/C3-WT 6206 2Z/C3-WT 6206 2Z/C3-WT 6306 2Z/C3-WT	6204 2RSH/C3-WT 6205 2Z/C3-WT 6205 2Z/C3-WT 6206 2Z/C3-WT 6206 2Z/C3-WT 6206 2Z/C3-WT

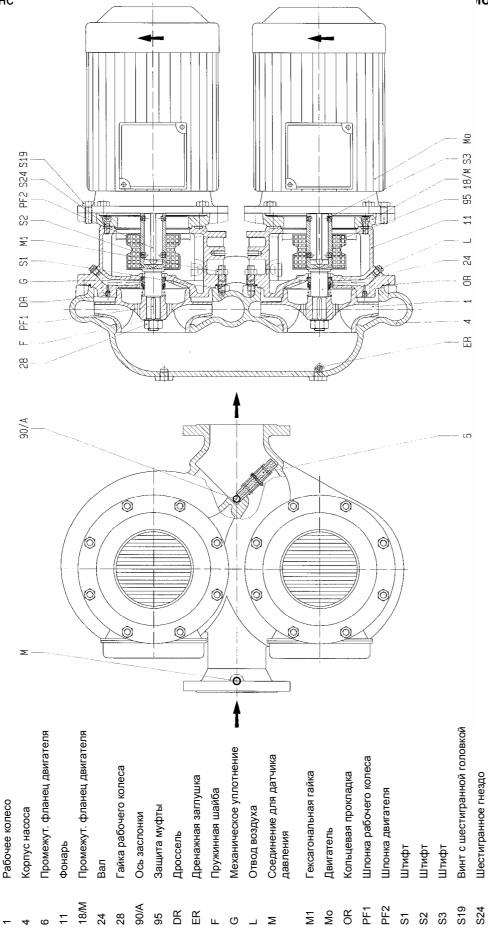
Двигатель не запускается	 Самопроизвольная остановка двигателя после нормального пуска	Скорость двигателя ниже номинальной	Чрезмерные время разгона двигателя и/ли потребляемый ток	Вращение не в ту сторону	Перегрев двигателя при нормальной рабочей нагрузке	Чрезмерная вибрация двигателя	Скребущие звуки при работе	Чрезмерный шум при работе	Перегрев подшипников	Возможная причина	Рекомендации
										Перегорание предохранителей	Заменить предохранители, обратив внимание на их тип.
										Срабатывание защиты от перегрузок	При отсутствии реальной перегрузки - отрегулировать защитную аппаратуру
										Параметры энергоснабжения н соответствуют параметрам двигателя	е Проверить соответствие параметров сети табличке и реальным условиям эксплуатации двигателя
										Неправильное подключение к сети	Проверить подключение по прилагаемой к двигателю схеме
										Разрыв цепи в одной из обмоток или - аппаратах управления	в Как правило, при включении двигатель гудит, но не вращается. Проверить все обмотки и органы управления.
										Механические повреждения двигателя	Убедиться, что валы двигателя и связанного с ним оборудования вращаются без заеданий. Проверить состояние и смазку подшипников
										Короткое замыкание в статоре	Как правило, сопровождается перегоранием предохранителей. ДВИГАТЕЛЬ ПОДЛЕЖИТ ПЕРЕМОТКЕ.
										Плохое соединение обмоток статора	Удалив колпачки с концов обмоток, выявить неисправность при помощи контрольной лампы
										Повреждение ротора	Проверить исправность каркаса и концевых колец
										Двигатель перегружен	Уменьшить нагрузку на двигатель до нормы
										"Выпадение" одной из фаз	Проверить энергоснабжение.
										Напряжение сети ниже номинального	Убедиться в соответствии напряжения табличке на двигателе. Проверить соединения и контакты.

$\overline{}$										T-	_
										Разрыв цепи	Проверить пускозащитную аппаратуру и статор
	•									Перебои энергоснабжения	Проверить сеть и пускозащитную аппаратуру
										Недостаточное напряжение на клеммах двигателя	Проверить соединения, достаточность сечения питающих проводов. Попробовать уменьшить нагрузку на двигатель и/ли установить повышающий трансформатор в цепи питания.
		-								Чрезмерная нагрузка в момент пуска двигателя	Проверить нагрузку в момент пуска
										Разрушение или "разбалтывание" каркаса ротора	Осмотреть ротор: около колец не должно быть трещин. Поврежденный ротор рекомендуется ЗАМЕНИТЬ ПОЛНОСТЬЮ: его ремонт помогает лишь на короткое время.
		•								Разрыв цепи питания	Выявить (тестером) и устранить повреждение.
										Недостаточное напряжение при пуске	Убедиться, что цепь не обладает избыточным сопротивлением. Достаточно ли сечение питающего кабеля?
										Повреждение короткозамкнутого ротора	Целиком заменить ротор
										Недостаточное напряжение сети	Обратиться в энергоснабжающую компанию
										Неправильное подключение фаз	Поменять фазовые провода местами на двигателе или на щите
										Недостаточная вентиляция двигателя вследствие засора воздухозаборных отверстий пылью или др.	Прочистить отверстия, убедиться, что к двигателю поступает достаточно свежего воздуха
										"Выпадение" одной из фаз	Проверить подключение фазовых проводов
										Пробой одной из обмоток на "землю"	Выявить и устранить пробой
										Нестабильное напряжение на клеммах двигателя	Проверить соединения и трансформаторы
						•				Повреждение подшипника	Выявить и заменить дефектный подшипник
						-				Нарушена балансировка двигателя Несбалансированность ротора и муфты (шпонка-полушпонка)	Восстановить балансировку Восстановить балансировку
						•					Роверить питающую электросеть
						•				Чрезмерно "биение" конца вала	Проверить подшипники, попробовать установить шайбу
							•			Вентилятор задевает крышку корпуса	Устранить задевание
				-	-		•			Вентилятор задевает изоляцию	Прочистить и отрегулировать вентилятор
										Неравномерный воздушный зазор в двигателе	Проверить и отрегулировать, включая подшипники и скобы
			<u> </u>	1	1	<u> </u>	<u> </u>	-		Нарушение балансировки ротора	Восстановить балансировку
									•	Деформация или повреждение вала	Вал выпрямить или заменить
									•	Недостаточная смазка	Проверить и правильно смазать
								ļ	<u> </u>		подшипники.
										Загрязнение жидкой или вязкой смазки подшипников	Удалив старую смазку, промыть подшипники керосином и смазать достаточным количеством качественной смазки
									•	Чрезмерное заполнение подшипника смазкой	
									•	Чрезмерная нагрузка на подшипник	Проверить осевые и радиальные нагрузки на подшипник
									•	Разрушение шарика или повреждение обоймы подшипника	



S	Denevelle vacter
; -	Рабочее колесо
4	Корпус насоса
0/D	Комп. Изн. на напорн. стороне
9/S	Комп. Изн. на всасыв стор. фонарь
4	Кольцо проставка
16	Шайба
17	Стопорная пластина
18/G	Крышка корпуса
18/M	Промежут. фланец двигателя
24	Вал
25	Именная табличка насоса
28	Гайка рабочего колеса
80/F	Пружинная
ш	Пружинная шайба
G	Механическое уплотнение
_	Отвод воздуха
Σ	Соед. штуцер для датчика давлен
Mo	Двигатель
OR	О – образная прокладка
PF1	Шпонка рабочего колеса
PF2	Шпонка двигателя
S18	Установочный винт

Æ


Могут быть внесены технические изменения! Не в масштабе!

> Revision 00 Issue 12/2003

Могут быть внесены технические изменения! Не в масштабе Разрез насоса LR, LMR, LMZ

Перечень частей

Могут быть внесены технические изменения! Не в масштабе

Beca:

LR - 2900 об/мин							
	Мощность	Bec					
Типоразмер насоса	двигателя [кВт]	[кг]					
LR 40-125 U 072	0,75	32					
LR 40-125 U 112	1,1	34					
LR 40-160 U 152	1,5	36					
LR 40-160 U 222	2,2	39					
LR 40-200 U 302	3,0	54					
LR 40-200 U 402	4,0	67					
LR 40-200 U 552	5,5	76					
LR 40-250 U 752	7,5	79					
LR 40-250 U 1102	11,0	120					
LR 50-125 U 112	1,1	34					
LR 50-125 U 152	1,5	37					
LR 50-160 U 222	2,2	40					
LR 50-160 U 302	3,0	45					
LR 50-160 U 402	4,0	47					
LR 50-200 U 552	5,5	76					
LR 50-200 U 752	7,5	80					
LR 50-250 U 1102A	11,0	120					
LR 50-250 U 1102	11,0	120					
LR 50-250 U 1502	15,0	137					
LR 65-125 U 222	2,2	46					
LR 65-125 U 302	3,0	50					
LR 65-125 U 402	4,0	59					
LR 65-160 U 552	5,5	80					
LR 65-160 U 752	7,5	84					
LR 65-200 U 1102A	11,0	115					
LR 65-200 U 1102	11,0	115					
LR 65-250 U 1502	15,0	140					
LR 65-250 U 1852	18,5	153					
LR 65-250 U 2202	22,0	167					
LR 80-125 U 302	3,0	68					
LR 80-125 U 402	4,0	73					
LR 80-125 U 552	5,5	84					
LR 80-160 U 752	7,5	87					
LR 80-200 U 1102	11,0	126					
LR 80-200 U 1502	15,0	149					
LR 80-200 U 1852	18,5	149					
LR 80-200 U 2202	22,0	170					
LR 100-160 U 1102	11,0	130					
LR 100-200 U 1852	18,5	160					
LR 100-200 U 2202	22,0	180					

LR - 1450 об/мин							
T.,	Мощность	Bec					
Типоразмер насоса	двигателя [кВт]	[кг]					
LR 40-200 U 054	0,55	46					
LR 40-200 U 074	0,75	46,5					
LR 40-250 U 114	1,1	60,5					
LR 40-250 U 154	1,5	61					
LR 50-200 U 074	0,75	60,5					
LR 50-200 U 114	1,1	63					
LR 50-250 U 154	1,5	62					
LR 50-250 U 224	2,2	68,5					
LR 65-160 U 074	0,75	48					
LR 65-160 U 114	1,1	49					
LR 65-200 U 154	1,5	65,5					
LR 65-250 U 224	2,2	75,5					
LR 65-250 U 304	3,0	78,5					
LR 80-125 U 074	0,75	52,5					
LR 80-125 U 114	1,1	56					
LR 80-200 U 154	1,5	77					
LR 80-200 U 224	2,2	83					
LR 80-200 U 304	3,0	87,5					
LR 80-250 U 404	4,0	102					
LR 80-250 U 554	5,5	113					
LR 100-160 U 154	1,5	71					
LR 100-200 U 224	2,2	95					
LR 100-200 U 304	3,0	96,5					
LR 100-250 U 404	4,0	110					
LR 100-250 U 554	5,5	119					
LR 100-250 U 754	7,5	135					

LMR, LMZ - 1450 об/мин								
Типоразмер насоса	Мощность	Bec						

	anusorona (vDz1	[ree]
LMR 125-160 U 304	двигателя [кВт]	[кг] 124
	3,0	124
LMR 125-200 U 404	4,0	
LMR 125-200 U 554	5,5	143
LMR 125-250 U 754	7,5	172
LMR 125-250 U 1104	11,0	216
LMR 125-315 U 1504	15,0	300
LMR 125-315 U 1854	18,5	335
LMR 125-315 U 2204	22,0	345
LMR 150-200 U 554	5,5	169
LMR 150-200 U 754	7,5	182
LMR 150-200 U 1104	11,0	225
LMR 150-250 U 1104	11,0	240
LMR 150-250 U 1504	15,0	260
LMR 150-250 U 1854	18,5	295
LMZ 40-160 U 044	0,37	67
LMZ 40-160 U 064	0,55	69
LMZ 40-200 U 084	0,75	87
LMZ 40-200 U 114	1,10	91
LMZ 50-160 U 044	0,37	69
LMZ 50160 U 064	0,55	71
LMZ 50-160 U 084	0,75	72
LMZ 50-200 U 114	1,10	96
LMZ 50-250 U 154	1,50	133
LMZ 50-250 U 224	2,20	139
LMZ 50-250 U 304	3,00	143
LMZ 65-125 U 064	0,55	70
LMZ 65-160 U 114	1,10	84
LMZ 65-200 U 154	1,50	104
LMZ 65-200 U 224	2,20	110
LMZ 65-250 U 304	3,00	143
LMZ 65-250 U 404	4,00	159
LMZ 80-125 U 084	0,75	80
LMZ 80-160 U 114	1,10	97
LMZ 80-160 U 154	1,50	99
LMZ 80-200 U 224	2,20	118
LMZ 80-200 U 304	3,00	122
LMZ 80-250 U 404	4,00	185
LMZ 80-250 U 554	5,50	214
LMZ 100-160 U 154	1,50	110
LMZ 100-160 U 224	2,20	116
LMZ 100-200 U 304	3,00	141
LMZ 100-200 U 404	4,00	159
LMZ 100-250 U 554	5,50	228
LMZ 100-250 U 754	7,50	243
LMZ 125-160 U 304	3,00	214
LMZ 125-200 U 404	4,00	181
LMZ 125-200 U 554	5,50	210
LMZ 125-250 U 754	7,50	204
LMZ 125-250 U 1104	11,0	313
LMZ 150-200 U 554	5,50	272
LMZ 150-200 U 754	7,50	287
LMZ 150-200 U 1104	11,0	336
LMZ 150-250 U 1104	11,0	392
LMZ 150-250 U 1504	15,0	412
LMZ 150-250 U 1854	18,5	447
	,-	